47079488 A2 NI A0 DO OO A

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 September 2004 (16.09.2004)

(10) International Publication Number

WO 2004/079488 A2

GOoF

(51) International Patent Classification’:

(21) International Application Number:
PCT/IB2004/050150

(22) International Filing Date: 25 February 2004 (25.02.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

03100555.6 6 March 2003 (06.03.2003) EP

(71) Applicant (for all designated States except US): KONIN-
KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]J;
Groenewoudseweg 1, NL.-5621 BA Eindhoven (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VAN ELIND-
HOVEN, Josephus, T., J. [NL/NL]; c/o Prof. Holstlaan
6, NL-5656 AA Eindhoven (NL). RUTTEN, Martijn, J.
[NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven
(NL). POL, Evert-Jan, D. [NL/NL]; c/o Prof. Holstlaan
6, NL-5656 AA Eindhoven (NL).

(74) Agent: DULJVESTLIN, Adrianus, J.; Prof. Holstlaan 6,
NL-5656 AA Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

[Continued on next page]

(54) Title: DATA PROCESSING SYSTEM WITH CACHE OPTIMISED FOR PROCESSING DATAFLOW APPLICATIONS

Copracessor l/ 12b 22h
7Yy A

P20 00

P/ / ;

: Cache Cache conrofler :

: memory L, | 30 320 :

: <€ / L :

: Selecting Stream ;

: 210 means table

é ry :
U) PO 3
y , | /

Memory | —32

(57) Abstract: Non-overlapping cache locations are reserved for each data stream. Therefore, stream information, which is unique
to each stream, is used to index the cache memory. Here, this stream information is represented by the stream identification. In
particular, a data processing system optimised for processing dataflow applications with tasks and data streams, where different
& streams compete for shared cache resources is provided. An unambiguous stream identification is associated to each of said data
& stream. Said data processing system comprises at least one processor (12) for processing streaming data, at least one cache memory
g (200) having a plurality of cache blocks, wherein one of said cache memories (200) is associated to each of said processors (12), and
at least one cache controller (300) for controlling said cache memory (200), wherein one of said cache controllers (300) is associated
to each of said cache memories (200). Said cache controller (300) comprises selecting means (350) for selecting locations for storing
elements of a data stream in said cache memory (200) in accordance to said stream identification (stream_id).

WO 2004/079488 A2 I NI 900000000 A 0

JP. KE, KG, KP. KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, Published:

MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, — without international search report and to be republished
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, upon receipt of that report

TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD,
SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HU, IE, IT,
LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ,
CFE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2004/079488 PCT/1IB2004/050150

Data processing system with cache optimised for processing dataflow applications

The invention relates to a data processing system optimised for processing
dataflow applications with tasks and data streams, a semiconductor device for use in a data
processing environment optimised for processing dataflow applications with tasks and data
streams and a method for indexing a cache memory in a data processing environment
optimised for processing dataflow applications with tasks and data streams.

The design efforts for data processing systems especially equipped for data
flow application like high-definition digital TV, set-top boxes with time-shift functionality,
3D games, video conferencing, MPEG-4 applications, and the like has increased during
recent years due to an increasing demand for such applications.

In stream processing, successive operations on a stream of data are performed
by different processors. For example a first stream might consist of pixel values of an image,
that are processed by a first processor to produce a second stream of blocks of DCT (Discrete
Cosine Transformation) coefficients of 8x8 blocks of pixels. A second processor might
process the blocks of DCT coefficients to produce a stream of blocks of selected and
compressed coefficients for each block of DCT coefficients.

In order to realise data stream processing a number of processors are provided,
each capable of performing a particular operation repeatedly, each time using data from a
next data object from a stream of data objects and/or producing a next data object in such a
stream. The streams pass from one processor to another, so that the stream produced by a first
processor can be processed by a second processor and so on. One mechanism of passing data
from a first to a second processor is by writing the data blocks produced by the first processor
into the memory. The data streams in the network are buffered. Each buffer is realised as a
FIFO, with precisely one writer and one or more readers. Due to this buffering, the writer and
readers do not need to mutually synchronize individual read and write actions on the channel.
Typical data processing system include a mix of fully programmable processors as well as
application specific subsystems dedicated to single application respectively.

An example of such an architecture is shown in Rutten et al. “Eclipse: A
Heterogeneous Multiprocessor Architecture for Flexible Media Processing”, IEEE Design
and Test of Computers: Embedded Systems, pp. 39 — 50, July — August 2002. The required

10

15

20

25

30

WO 2004/079488 PCT/1B2004/050150

processing applications are specified as a Kahn process network, i.e. a set of concurrently
executing tasks exchanging data by means of unidirectional data streams. Each application
task is mapped on a particular programmable processors or one of the dedicated processors.
The dedicated processors are implemented by coprocessors, which are only weakly
programmable. Each coprocessor can execute multiple tasks from a single Kahn network or
from multiple network on a time-shared basis. The streaming nature of e.g. media processing
applications result in a high locality of reference, i.e. consecutive references to the memory
address of neighbouring data. Furthej,rmore, a distributed coprocessor shell is imblemented
between the coprocessors and the communication network, i.e. the bus and the main memory.
It used to absorb many system-level problems like multitasking, stream synchronisation and
data transport. Due to its distributed nature, the shells can be implemented close to the
coprocessor, which it is associated to. In each shell all data required for handling the streams
incident to tasks being mapped on the coprocessor associated to the shell are stored in the
shell’s stream table.

The shells comprise caches in order to reduce data access latency occurring
when reading or writing to a memory. Data which is required to perform future processing
steps are cached i.e. stored in a smaller memory, which is separate from the main memory
and is arranged closed to a processor using the stored data. In other words a cache is used as
an intermediate storage facility. By reducing the memory access latency the processing speed
of a processor can be increased. If data words are merely to be accessed by the processor
from its cache rather than from the main memory, the average access time and the number of
main memory accesses will be significantly reduced.

The stream buffers implemented in shared memory compete for shared
resources like cache lines and the limited number of banks to store address tags. Since the
tasks of the coprocessors are Input/Output intensive, an efficient cache behaviour is required
to avoid contention of cache resources, which could lead to task execution delays.

It is therefore an object of the invention to reduce the occurrence of cache
contention in an environment optimised for processing dataflow applications, where different
streams compete for shared cache resources.

This object is solved by a data processing system according to claim 1, a
semiconductor device for use in a data processing environment optimised for processing
dataflow applications with tasks and data streams according to claim 9 and a method for
indexing a cache memory in a data processing environment optimised for processing

dataflow applications according to claim 10.

10

15

20

25

30

0 2004/079488 PCT/IB2004/050150

The invention is based on the idea to reserve non-overlapping cache locations
for each data stream. Therefore, stream information, which is uniquc; to each stream, is used
to index the cache memory. Here, this stream information is represented by the stream
identification.

In particular, a data processing system optimised for processing dataflow
applications with tasks and data streams, where different streams compete for shared cache
resources is provided. An unambiguous stream identification is associated to each of said
data stream. Said data processing system comprises at least one processor 12 for processing
streaming data, at least one cache memory 200 having a plurality of cache blocks, wherein
one of said cache memories 200 is associated to each of said processors 12, and at least one
cache controller 300 for controlling said cache memory 200, wherein one of said cache
controllers 300 is associated to each of said cache memories 200. Said cache controller 300
comprises selecting means 350 for selecting locations for storing elements of a data stream in
said cache memory 200 in accordance to said stream identification stream_id. Therefore, the
caching of data from different streams is effectively decoupled.

According to an aspect of the invention, said selecting means 350 comprises a
subset determining means 352 for selecting a set of cache blocks from within said row of
cache blocks in said cache memory 200 in accordance with a subset of an Input/Output
address of said stream.

According to a further aspect of the invention said selecting means 350
comprises a hashing function means 351 for performing a hashing function on said stream
identification stream_id to a number which is smaller than the number of cache rows.

According to a further aspect of the invention said hashing function means 351
is adapted for performing is a modulo operation. By sharing the available cache rows over
different tasks the cache memories 200 can be embodied smaller thereby limiting the cost of
cache memory in the overall system.

According to further aspect of the invention said selecting means 350 selects
locations for a data stream in said cache memory 200 in accordance to a task identification
task_id and/or a port identification port_id associated to said data stream.

The invention also relates to a semiconductor device for use in a data
processing environment optimised for processing dataflow applications with tasks and data
streams, where different tasks compete for shared cache resources, wherein an unambiguous
stream identification stream_id is associated to each of said data stream. Said device

comprises a cache memory 200 having a plurality of cache blocks, and a cache controller

WO 2004/079488 PCT/IB2004/050150

10

15

20

25

30

300 for controlling said cache memory 200, wherein said cache controller 300 is associated
to said cache memory 200. Said cache controller 300 comprises selecting means 350 for
selecting locations for storing elements of a data stream in said cache memory 200 in
accordance to said stream identification stream_id.

Moreover, the invention further relates to a method for indexing a cache
memory 200 in a data processing environment optimised for processing dataflow applications
with tasks and data streams, where different streams compete for shared cache resources.
Said cache memory 200 comprises a plurality of cache blocks. An unambiguous stream
identification stream_id is associated to each of said data stream. Locations for storing
elements of a data stream in said cache memory 200 are selected in accordance to said stream
identification stream_id to distinguish a smaller number of subsets in said cache memory
than the potential number of different stream_ids.

Further aspects of the invention are described in the dependent claims.

These and other aspects of the invention are described in more detail with
reference to the drawings, the figures showing:

Fig. 1 a schematic block diagram of an architecture of a stream based
processing system according to the invention,

Fig. 2 a block diagram of a cache controller according to the invention, and

Fig. 3 a conceptual view of the cache organisation according to a second |

embodiment of the invention.

Fig. 1 shows a processing system for processing streams of data objects
according to a preferred embodiment of the invention. The system can be divided into
different layers, namely a computation layer 1, a communication support layer 2 and a
communication network layer 3. The computation layer 1 includes a CPU 11, and two
processors or processors 12a, 12b. This is merely by way of example, obviously more
processors may be included into the system. The communication support layer 2 comprises a
shell 21 associated to the CPU 11 and shells 22a, 22b associated to the processors 12a, 12b,
respectively. The communication network layer 3 comprises a communication network 31

and a memory 32.

WO 2004/079488

10

15

20

25

30

PCT/IB2004/050150

The processors 12a, 12b are preferably dedicated processor; each being
specialised to perform a limited range of stream processing function. Each processor is
arranged to apply the same processing operation repeatedly to successive data objects of a
stream. The processors 12a, 12b may each perform a different task or function, e.g. variable
length decoding, run-length decoding, motion compensation, image scaling or performing a
DCT transformation. In operation each processor 12a, 12b executes operations on one or
more data streams. The operations may involve e.g. receiving a stream and generating
another stream or receiving a stream without generating a new stream or generating a stream
without receiving a stream or modifying a received stream. The processors 12a, 12b are able
to process data streams generated by other processors 12b, 12a or by the CPU 11 or even
streams that have generated themselves. A stream comprises a succession of data objects
which are transferred from and to the processors 12a, 12b via said memory 32.

The shells 22a, 22b comprise a first interface towards the communication
network layer being a communication layer. This layer is uniform or generic for all the‘shells.
Furthermore the shells 22a, 22b comprise a second interface towards the processor 12a, 12b
to which the shells 22a, 22b are associated to, respectively. The second interface is a task-
level interface and is customised towards the associated processor 12a, 12b in order to be
able to handle the specific needs of said processor 12a, 12b. Accordingly, the shells 22a, 22b
have a processor-specific interface as the second interface but the overall architecture of the
shells is generic and uniform for all processors in order to facilitate the re-use of the shells in
the overall system architecture, while allowing the parameterisation and adoption for specific
applications.

The shell 22a, 22b comprise a reading/writing unit for data transport, a
synchronisation unit and a task switching unit. These three units communicate with the
associated processor on a master/slave basis, wherein the processor acts as master.
Accordingly, the respective three unit are initialised by a request from the processor.
Preferably, the communication between the processor and the three units is implemented by a
request-acknowledge handshake mechanism in order to hand over argument values and wait
for the requested values to return. Therefore the communication is blocking, i.e. the
respective thread of control waits for their completion.

The shells 22a, 22b are distributed, such that each can be implemented close to
the processor 12a, 12b that it is associated to. Each shell locally contains the configuration
data for the streams which are incident with tasks mapped on its processor, and locally

implements all the control logic to properly handle this data. Accordingly, a local stream

10

15

20

25

30

WO 2004/079488 PCT/IB2004/050150

table may be implemented in the shells 22a, 22b that contains a row of fields for each stream,
or in other words, for each access point.

Furthermore, the shells 22 comprise a data cache for data transport, i.e. read
operation and write operations, between the processors 12 and the communication network
31 and the memory 32. The implementation of a data cache in the shells 22 provide a
transparent translation of data bus widths, a resolvement of alignment restrictions on the
global interconnect, i.e. the communication network 31, and a reduction of the number of I/O
operations on the global interconnect.

Preferably, the shells 22 comprise the cache in the read and write interfaces,
however these caches are invisible from the application functionality point of view. The
caches a play an important role in the decoupling the processor read and write ports from the
global interconnect of the communication network 3. These caches have the major influence
on the system performance regarding speed, power and area.

For more detail on the architecture according to Fig. 1 please refer to Rutten et
al. “Eclipse: A Heterogeneous Multiprocessor Architecture for Flexible Media Processing”,
IEEE Design and Test of Computers: Embedded Systems, pp. 39 — 50, July — August 2002.

Fig. 2 shows a part of the architecture according to Fig. 1. In particular, a
processor 12b, the shell 22b, the bus 31 and the memory 32 are shown. The shell 22b
comprises a cache memory 200 and a cache controller 300 as part of its data transport unit.
The cache controller 300 comprises a stream table 320 and a selecting means 350. The cache
memory 200 may be divided into different cache blocks 210.

When a read or write operation, i.e. an I/O access, is performed by a task on
the coprocessor 12b it supplies a task_id and a port_id parameter next to an address
indicating from or for which particular task and port it is requesting data. The address denotes
a location in a stream buffer in shared memory. The stream table 320 contains rows of fields
for each stream and access points. In particular, the stream table is indexed with a stream
identifier stream_id, which is derived from the task identifier task_id, indicating the task
which is currently processed, and a port identifier port_id, indicating the port for which the
data is received. The port_id has a local scope for each task.

The first embodiment of the invention is directed to addressing by means of
indexing involving a direct address decoding, wherein an entry is determined directly from
the decoding. Therefore, said selecting means 350 uses the stream identifier stream_id to
select a row of cache blocks in said cache memory 200. A particular cache block from within

the selected cache row is indexed through the lower bits of said address supplied by the

WO 2004/079488 PCT/IB2004/050150

10

15

20

25

30

coprocessor, i.e. the I/O address. Alternatively, the upper bits of the address may be used for
indexing. The organisation of the cache memory 200 according to this embodiment is done
on a direct-mapped basis, i.e. every combination of a stream identifier and an address can
only be mapped to a single cache location. Accordingly, the number of cache blocks in a row
is restricted to the power of two. In other words, as a column is selected by decoding a
number of address bits, this will always expand to a power-of-2 number of columns.

Fig. 3 shows a conceptual view of the cache organisation according to a
second embodiment of the invention, wherein this cache organisation is done on a direct-
mapped basis. The selectiﬁg means from Fig. 2 comprises a hashing function means 351 and
a subset determining means 352. The stream_id is input to said hashing function means 351,
while the I/0 address is input to said subset determining means 352. Preferably, the hashing
function means 351 performs a modulo operation over the number of cache rows, in order to
translate the stream identifier stream_id to a smaller number of cache rows of said cache
memory. The subset determining means 352 determines a particular cache column of said
cache memory through the lower bits of said address supplied by the coprocessor, i.e. the I/O
address. Alternatively, the upper bits of the address may be used for indexing. According to
the cache row determined by the hashing function means 351 and the cache column ' ?
determined by said subset determining means 352, a particular cache block can be indexed.
An actual data word may be located by means of tag matching on the address.

As an alternative, the port identifier port_id instead of the stream identifier
stream_id may be used as input of the hashing function means 351, wherein the hashing
function, i.e. a modulo operation over the number of cache rows is performed on the port
identifier port_id to render the port_id into a smaller number of cache rows in order to select
a cache row. This has the advantage, that by sharing the available cache rows over different
tasks the cache memories 200 in the shells 22 can be embodied smaller thereby limiting the
cost of cache memory in the overall system. Accordingly, a task may share a cache rows with
several task ports. However, this may be beneficial and cost-effective for cases where all data
is read from one task port, while only sporadically reading some data from a second task port.
Therefore, the hardware cost for a cache row for each task port can be reduced.

In an further alternative, the task identifier task_id is used as input to the
hashing function means 351, in order to select a cache row.

Although the principles of the invention have been described with regards to
the architecture according to Fig. 1, it is apparent, that the cache indexing scheme according

to the invention can be extended to a more general set-associate cache organisation, where

WO 2004/079488 PCT/IB2004/050150
8

the stream_id selects a cache row and the lower bits of the address select a set of cache

blocks, while the actual data is further located through tag matching on the address.

WO 2004/079488 PCT/IB2004/050150

10

15

20

25

CLAIMS:

1. Data processing system optimised for processing dataflow applications with
tasks and data streams, where different streams compete for shared cache resources, wherein
an unambiguous stream identification (stream_id) is associated to each of said data stream,
comprising;:
- at least one processor (12) for processing streaming data;
- at least one cache memory (200) having a plurality cache blocks, wherein one
of said cache memories (200) is associated to each of said processors (12), and
- at least one cache controller (300) for controlling said cache memory (200),
wherein one of said cache controllers (300) is associated to each of said cache memories
(200);

said cache controller (300) comprising:

- selecting means (350) for selecting locations for storing elements of a
data stream in said cache memory (200) in accordance to said stream identification
(stream_id).

2. System according to claim 1, wherein
said selecting means (350) is adapted for selecting a subset of cache blocks in

said cache memory (200) in accordance with said stream identification (stream_id).

3. System according to claim 2, wherein said selecting means (3 50) comprises:
- a subset determining means (352) for selecting a set of cache blocks from
within said subset of cache blocks in said cache memory (200) in accordance with a subset of

an Input/Output address of said stream.
4, System according to claim 3, wherein
said subset determining means (352) is adapted for selecting a cache block in

accordance with the lower bits of said Input/Output address of said stream.

5. System according to claim 3, wherein

10

15

20

25

30

PCT/IB2004/050150

WO 2004/079488

10

said subset determining means (352) is adapted for selecting a cache block
from within said set of cache blocks by tag matching on a subset of the input/output address
bits.

6. System according to claim 1, wherein said selecting means (350) comprises
- a hashing function means (35 1) for performing a hashing function on said

stream identification (stream_id) to a number which is smaller than the number of cache

TOwS.
7. System according to claim 6, wherein

said hashing function means (351) is adapted for performing is a modulo
operation.
8. System according to claim 1, wherein

said selecting means (350) is adapted for selecting locations for elements ofa
data stream in said cache memory (200) in accordance to a task identification (task_id) and/or

a port identification (port_id) associated to of said data stream.

9. Semiconductor device for use in a data processing environment optimised for
processing dataflow applications with tasks and data streams, where different streams
compete for shared cache resources, wherein an unambiguous stream identification
(stream_id) is associated to each of said data stream, comprising:
- a cache memory (200) having a plurality of cache blocks, and
- a cache controller (300) for controlling said cache memory (200), wherein said
cache controller (300) is associated to said cache memory (200);
said cache controller (300) comprising:

selecting means (350) for selecting locations for storing elements of a

data stream in said cache memory (200) in accordance to said stream identification

(stream_id).

10. Method for indexing a cache memory (200) in a data processing environment
optimised for processing dataflow applications with tasks and data streams, where different
streams compete for shared cache resources,

wherein said cache memory (200) comprises a plurality of cache blocks, and

WO 2004/079488 PCT/IB2004/050150
11

wherein an unambiguous stream identification (stream_id) is associated to
each of said data stream,
comprising the step of :
- selecting locations for storing elements of a data stream in said cache memory

(200) in accordance to said stream identification (stream_id).

PCT/1IB2004/050150

WO 2004/079488

1/2

¢ Jofej
}omau
uonesunwion

Z 19fej
Joddns
uoneaunwwo?

L Jofe)
uoneindwon

191

Z¢ Kiowsayy

L€ SMOMIBU UopeauNWWOoY

9Jep9lUl | uoneIUNWIWO?

. MH-IIPYS
qc¢e lI’ys BZZ II/YS MSTRUS
aoeeIUl | [aAs]YSEL
QgL 10SS8201 BZL J0SSa2014 LL NdD

WO 2004/079488 PCT/1IB2004/050150

2/2
Coprocessor _—12b 22b
200 300
/ / :
Cache Cache controller 5
memory :
350 320 :
“— / 5
Selecting Stream :
210 means table
e) P : 31
v /
Memory | —32
FIG.2
/350
Address 352 5
s v /
; Subset determining ;
; means ;
i Stream-id :
: / E Colum index
: | Hashing | i Row index
+ | function |— > 200
t | means _

FIG.3

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

