
Workshop on Parallel and Distributed Computing
 in Image Processing, Video Processing, and Multimedia (PDVIM’02)

April 15, 2002, Fort Lauderdale, Florida, USA

Abstract
Eclipse is a heterogeneous multiprocessor architecture

for high-performance media processing, including high-
definition MPEG encoding/decoding. The scalable archi-
tecture framework concurrently executes media process-
ing kernels in function-specific multi-tasking coprocessors
and a media processor, communicating via on-chip mem-
ory. Eclipse instances combine application configuration
flexibility with the efficiency of function-specific hard-
ware.

1. Introduction

Consumer audio/video systems are becoming increas-
ingly flexible to accommodate a variety of applications in
a wide range of products. Targeted media applications
include high-definition digital television with time shift
(e.g. a set-top box with pause button) functionality, 3D
games, video conferencing, or MPEG-4 like interactivity.
The required set of applications and their format varies per
product, per country, and over time as standards evolve.

Managing complexity, design cost, and time-to-market
of such systems requires a generic and scalable media
processing platform that enables simultaneous execution
of very diverse tasks, such as high-throughput stream-
oriented data processing and highly data-dependent ir-
regular processing with complex control flows. In this
paper, we propose the Eclipse architecture template as a
flexible and cost-effective, high-performance media proc-
essing subsystem of such a platform. The key innovation
of Eclipse is that it allows an adjustable mix of program-
mable and hardwired functions within a single subsystem.

Section 2 describes the targeted application domain
and introduces the model of computation of the Eclipse
architecture. Section 3 subsequently describes the main
architectural trade-offs that influence the design of a me-
dia processing architecture. This section serves as a ra-
tionale for the description of the Eclipse architecture
template in Section 4. In Section 5, we show a first in-
stance of the Eclipse template that we used to validate the
concepts outlined in this paper.

2. Media processing applications

Eclipse targets high-performance, data-dependent me-
dia processing, such as high-definition MPEG-2 decoding
and MPEG-4 decoding for digital TV broadcast, as well as
standard definition MPEG-2 encoding and transcoding for
time-shift applications. The characteristics of this applica-
tion domain influence the architectural design choices.
This section sketches the characteristics of the Eclipse
application domain as a basis for the architecture consid-
erations of Section 3.

We specify media-processing applications as a set of
concurrently executing tasks that exchange information
solely by unidirectional streams of data. A directed graph
with a node for each task and an edge for each data stream
represents the structure of the application. Kahn [1] intro-
duced a formal model of such applications already in
1974, followed by an operational description by Kahn and
MacQueen [2] in 1977. This formal model is now com-
monly referred to as a Kahn Process Network (KPN), and
defines the model of computation of the Eclipse architec-
ture. Fig. 1 shows such a network for MPEG-2 decoding.

+

Motion
compensation

Motion
compensation

Inverse zig-zag
scan

Inverse zig-zag
scan

Run-length
decoding

Run-length
decoding

Variable length
decoding

Variable length
decoding

Inverse
quantization

Inverse
quantization

Inverse
DCT

Inverse
DCT

VideoMPEG2 Bitstream

SaturateSaturate

Reference
frames

Reference
frames

Fig. 1. MPEG-2 decoder process network.

The data streams in the network are buffered. Each
buffer is a FIFO, with precisely one producer and one or
more consumers. Reading from a stream with insufficient
data available causes the consuming task to stall. Kahn
formally proved that such a system has a well-defined
unique behavior. In particular, the functional behavior—
observed as the sequence of data items that traverse the
edges—is independent of the scheduling of the tasks.

Eclipse: Heterogeneous Multiprocessor Architecture
for Flexible Media Processing

Martijn J. Rutten, Jos T.J. van Eijndhoven, Evert-Jan D. Pol
Egbert G.T. Jaspers, Pieter van der Wolf, Om Prakash Gangwal, Adwin Timmer

Philips Research Laboratories Eindhoven (PRLE)
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

martijn.rutten@philips.com

One of the most important strengths of this model is
the inherent building block nature. Once a set of basic
functions is defined as tasks, a multitude of applications
can be configured by instantiating tasks and connecting
them in a graph structure. Kahn process networks are used
in a variety of other environments. Kienhuis [3] describes
a systematic approach to create process networks from a
sequential specification. Ptolemy [4] provides an inte-
grated system for specification and analysis of, among
others, such process networks.

3. Media processing architectures

In the consumer electronics domain, media processing
applications execute on resource-constrained systems. The
performance, flexibility and cost effectiveness of such
resource-constrained systems are highly interrelated [5]-
[7]. The following subsections elaborate on the main ar-
chitectural trade-offs that influence these parameters as the
foundation for the design choices of the Eclipse architec-
ture template. The actual design decisions of Eclipse are
subject of Section 4.

3.1. Performance and granularity of parallelism

Media processing applications exhibit different forms
of parallelism that can be exploited to increase the com-
putational performance of programmable digital signal
processors [8]. The system architect has a choice how to
exploit the implicitly present parallelism in the applica-
tions. The exploitation techniques are not mutually exclu-
sive but can co-exist in a single architecture. Techniques
range from exploiting instruction and data level parallel-
ism in superscalar and VLIW architectures to the task
level parallelism of multi-processor and coprocessor ar-
chitectures.

For instance, a time-shift recorder function consists of
an encoding and decoding function which may be exe-
cuted in parallel. Providing separate encoder and decoder
hardware exploits this parallelism at a course granularity.
Within the decoder (Fig. 1) there are many medium-grain
tasks that in principle can proceed in parallel, e.g. the dis-
crete cosine transform (DCT) and quantization tasks. This
parallelism can be exploited by a number of parallel units
that execute these tasks simultaneously. Within such a
DCT task, many operations can execute in parallel. This
parallelism is called instruction-level parallelism (ILP),
and can be addressed for example in a VLIW architecture
[9]-[12].

3.2. Performance and granularity of synchroni-
zation

Parallel Kahn tasks communicate data through com-
munication buffers (FIFOs). Buffer requirements relate to

the regularity of processing in the application domain ver-
sus the coupling of timing of the functions. Regular tasks,
such as in linear video filtering where the worst-case
communication requirements equal the average case, allow
a tight coupling with minimal buffering [13][14]. Irregular
tasks demand less tight coupling to allow individual prog-
ress, leading to larger buffer requirements. A typical ir-
regular, data-dependent task is the variable length decoder
(VLD) in MPEG decoding where the quantity of input and
output data can vary wildly per stream or even within a
picture of a single stream. A less obvious example is the
DCT; the function itself is regular, but the number of DCT
coded blocks to be processed varies per MPEG frame.

Communication requires both data transport and syn-
chronization. Producers and consumers exchange infor-
mation on the amount of produced or consumed data in the
buffer that is available for consumption respectively for
production. We refer to this exchange of information as
synchronization. Due to the FIFO buffering, the producer
and consumer do not need to mutually synchronize indi-
vidual read and write actions on the channel. Thus, syn-
chronization granularity can be chosen independently. For
instance each individual data access can be synchronized,
i.e. at the granularity of data transport, or synchronization
can be closer related to the logical unit of input and output
data on which a task operates, e.g. the granularity of a
picture for an MPEG decoding task.

Decreasing the granularity of the application functions
to enhance parallelism and reuse increases the number of
streams passing through the communication network.
Thereby, both communication buffering and bandwidth
requirements increase. Finer grain synchronization of data
access to communication buffers (e.g. macroblock level in
MPEG) reduces these communication buffer requirements
per stream, at the expense of a higher synchronization rate.
This aids in coping with the increased bandwidth require-
ments by allowing to keep data streams on-chip. On-chip
communication buffers allow a dedicated communication
network optimized for the type of data access in the appli-
cation domain. For media processing, the streaming nature
of the application functions gives a high spatial locality of
reference, allowing deployment of a shared wide (e.g. 128
bits) bus in combination with communication buffers in a
centralized, wide on-chip memory.

3.3. Flexibility and programmability

Complex chip designs may implement their function-
ality fully in hardware, fully in software, or in a mixture of
hardware and software. An example of a complex hard-
wired chip is the Melzonic IC [15], implementing picture
improvement functionality. Members of the Intel Pentium
line of processors are prime examples of a fully program-
mable design. In the field of consumer electronics, design
constraints, such as cost (including power consumption),

performance, and flexibility, are weighted differently.
Consumer media processors approach the flexibility of the
processors in the PC market, but require an order of mag-
nitude lower cost prize in combination with a significantly
higher performance for the media-processing application
domain. For this reason, complex consumer electronics
chips target a mixture of hardware and software, leading to
the realm of Systems-on-a-Chip (SoC) [16]-[18]. These
SoCs consist of interconnected subsystems, each with their
own specific purpose. Currently, subsystems are either
hardwired or fully programmable. Typical subsystem ex-
amples are a dedicated MPEG decoder, respectively a
programmable embedded core. In contrast, Eclipse intro-
duces an adjustable mix of programmable and hardwired
functions in a single subsystem (Section 4).

3.4. Flexibility and reuse

Infrastructure flexibility is a trade-off of performance
density (i.e. the application throughput per unit area and
per unit power) versus development cost. A hardwired
MPEG-2 decoder will be more efficient in performance,
area, and power consumption than an equivalent MPEG
decoder implemented as a network of coprocessors con-
nected via a bus to shared memory. Moreover, as the de-
velopment of a programmable architecture requires
generic solutions for the complete application domain, the
development cost of programmable architectures is sig-
nificantly higher than the development cost for a single
function architecture. However, once the flexible archi-
tecture with associated software development environment
is available, the time-to-market of a new software-based
application can be very fast.

If the coprocessors in the above example are suffi-
ciently generic, the flexible infrastructure will allow reuse
of the coprocessors for other applications in the same do-
main, such as MPEG-2 encoding. This is clearly exploited
by the DSPs in the MVP architecture [19]. This type of
flexibility provides both the reuse of an existing hardware
platform for newly defined functions or evolving stan-
dards, as well as the reuse of hardware by time-sharing a
single coprocessor over a set of similar functions.

The design of dedicated coprocessors that can never-
theless be reused over a set of applications heavily relies
on the presence of common application functions in the
targeted application domain that allow such a dedicated
hardware implementation. For instance, MPEG-2 decod-
ing and encoding applications can reuse a single inverse
DCT implementation. Moreover, the forward and inverse
DCT functions of an MPEG-2 encoding application are
sufficiently similar to execute on a single dedicated DCT
coprocessor through time-sharing. Thus, a time-shift re-
cording application can reuse a single DCT coprocessor
three times.

3.5. Design cost and scalability

Reuse is crucial to keep the design cost of consumer
devices at an acceptable level. Scalability is needed to
implement reuse over generations of an architecture. Ar-
chitecture templates support scalability by providing a set
of parameterized rules for the composition of a
(sub)system. Examples of template parameters are mem-
ory size, bus width, number and type of (co)processors,
etc. Architecture templates have been widely deployed at
SoC level [16]-[18]. However, subsystem-level templates
are relatively unknown. Eclipse provides such a template
at subsystem level (Section 4).

The programmable infrastructure must be able to grow
with the advance of IC technology, while reusing its ele-
mentary functions. Moreover, the infrastructure should be
reusable over a varying number and type of elementary
functions. Such scalability is generally accomplished by
separating the design of the elementary functions from the
infrastructure and vice versa through a stable interface.

A second aspect of scalability of an architecture is the
autonomy of the function modules. Scalable architectures
typically avoid complex centralized modules that control
large parts of the architecture. For example, a coprocessor
architecture where a single CPU synchronizes all coproc-
essors is not scalable as the interrupt rate will overload the
CPU with an increasing number of coprocessors [20]. In a
more scalable solution, every coprocessor may control its
own behavior without needing CPU support.

4. Eclipse architecture template

The Eclipse architecture supports the implementation
of medium-grain functions in function-specific coproces-
sors and/or CPU software executing on a media processor
(e.g. the TriMedia VLIW [9][10]). Functions eligible for
coprocessor implementation are those commonly encoun-
tered in media applications, such as the DCT transform
used by decoders and encoders for e.g. JPEG, MPEG, and
DV. These medium-grain functions are linked at run-time
into a Kahn-style application, using on-chip communica-
tion and data buffering. Fig. 2 indicates such a mapping of
Kahn tasks onto coprocessors and/or CPU software.

Eclipse coprocessors are dedicated hardware function
units which are only weakly programmable. All coproces-
sors run in parallel and execute their own thread of con-
trol. The coprocessors allow multi-tasking, i.e. each
coprocessor concurrently supports multiple Kahn tasks
from a single Kahn network or from multiple and possibly
different networks. Time-shared use of the coprocessors
does not rely on run-time control by CPU software. CPU
software however, is responsible for configuring the appli-
cation networks.

Application

Architecture
Proc 1 Proc 2 Proc 3

Communication
& Memory

Mapping

Fig. 2. Application to architecture mapping.

4.1. Coprocessor shell

Eclipse is an architecture template at subsystem level,
supporting a mix of hardware and software. The scalable
Eclipse architecture allows any set of coprocessors to be
included in each targeted instance. More specifically, the
number of coprocessors may vary over instances. The
template can scale from run-time configurable dedicated
hardware that only needs configuration support from a
control processor somewhere else in the system, up to in-
stances that support mainly software functions with limited
hardware acceleration.

To effectively separate communication hardware
(buses, memories) and computation hardware (coproces-
sors), Eclipse introduces the coprocessor shell. Fig. 3 de-
picts this interface block between coprocessors and the
communication hardware. The shell alleviates coprocessor
design by absorbing many system-level issues, such as
multi-tasking, stream synchronization, and data transport.
Thus coprocessor designers can concentrate on real appli-
cation functionality.

Communication

Generic support

ComputationCoprocessorCoprocessorCPU

Shell-HW Shell-HWShell-SW
Shell-HW

task-level interface

communication interface

Communication network

Memory

Fig. 3. Coprocessor shell interfacing computation
and communication.

The shells are distributed, such that each shell can be
instantiated close to the coprocessor that it serves. Each
coprocessor interacts with its shell through five interface
primitives:

int GetTask(…) for multi-tasking; the following
primitives for data communication:

void Read(int port_id, int offset,
int n_bytes, Bytes *bytevector);

void Write(int port_id, int offset,
 int n_bytes, const Bytes *bytevector),

and the primitives for data synchronization:
bool GetSpace(int port_id, int n_bytes);
void PutSpace(int port_id, int n_bytes).

Although these primitives are generic and simplify co-
processor design, the five interface primitives allow com-
plex coprocessor control to cope with for instance data
dependent I/O, variable packet sizes, error recovery, and
pipelined processing. In all cases the coprocessor has the
initiative for taking action; all primitives are called by the
coprocessor and implemented by the shell.

While having a customized (data width) interface to-
wards the coprocessor, the shells have a uniform interface
towards the communication hardware. This way, the shells
allow reuse of coprocessor designs over different Eclipse
instances with different communication network charac-
teristics. Moreover, the architecture of the shell itself is
designed as a parameterized template to facilitate reuse
within an Eclipse instance. Shell instances with coproces-
sor-specific parameter settings are derived from this ge-
neric template. Examples of such parameters are the data
width of the read and write interface between coprocessor
and shell, or the size of data caches in the shell.

4.2. Multi-tasking

The Eclipse architecture supports multi-tasking,
meaning that several application tasks may be mapped to a
single coprocessor, as shown previously in Fig. 2. New
silicon technologies allow fast and efficient coprocessors
that have sufficient computation speed for time-shared use.
Support for multi-tasking is essential for achieving flexi-
bility of the architecture towards configuring a range of
applications and reapplying the same hardware coproces-
sors at different places in an application task graph.

Clearly, multi-tasking implies the need for a task
scheduler that decides which task any coprocessor must
execute at which points in time to obtain proper applica-
tion progress. As Eclipse is targeted at irregular data-
dependent stream processing and dynamic workloads, the
scheduler must be effective for applications with dynamic
workload such as to optimally utilize the Eclipse coproc-
essors. Therefore, task scheduling cannot be done off-line
but is performed at run-time.

Eclipse targets relatively high performance, high data
throughput applications with aggregate bandwidths in the
order of GBytes per second. Due to the limited size for on-
chip memory containing the stream FIFO buffers, high
data synchronization and task switch rates are required, as
explained in Section 3.2. As the task switch rate is too
high (10-100 kHz) for run-time scheduling in software,
Eclipse implements task scheduling and synchronization in
dedicated hardware.

The scheduling algorithm must be sufficiently simple
to allow a cost-effective hardware implementation in each
shell. On the other hand, the scheduling algorithm needs to
be flexible enough to fit the needs of different coproces-
sors and applications within the generic shell template.
Autonomy of the coprocessors contributes to both scal-
ability and cost-effectiveness. Therefore, task scheduling
is distributed, where the task scheduler in each shell runs
independent of task schedulers in other shells.

Unit of execution. The coprocessor explicitly decides on
the time instances during task execution at which it can
switch the running task. This way, the hardware architec-
ture does not need provisions for saving context at arbi-
trary points in time. The coprocessor can continue
processing up to a point where it has little or no state.
These are the moments at which the coprocessor can per-
form a task switch most easily.

At such moments, the coprocessor asks the shell for
which task it should perform work next. This inquiry is
done through the GetTask primitive. The return value is a
task ID, a small non-negative number that identifies the
new task context. The intervals between such inquiries are
by definition denoted as processing steps. Generally, a
processing step involves reading in one or more packets of
data, performing some operations on the acquired data,
and writing out one or more packets of data.

The target granularity for processing steps within the
Eclipse architecture is in the range of 10—1000 clock
cycles. Typically, the duration of a processing step is data
dependent and can vary within this range. The number of
processing steps needed to complete an application mile-
stone (e.g. an MPEG frame), as well as the number of
produced and consumed data items per processing step,
may also be data dependent. The task scheduler must
manage such data-dependent workload in such a way that
the coprocessor is used cost-effectively.

Budget-based round-robin. The task scheduler is based
on round-robin style task selection as this can be effi-
ciently implemented in hardware. The scheduler uses a
weighted round-robin scheme, where the weights or budg-
ets are configured as a guaranteed minimum number of
cycles that a task may continuously execute, irrespective
of the resource requirements of other tasks [21]. These
budgets typically range from 1000 up to 10,000 clock cy-
cles (10—100 processing steps).

The tasks that are mapped onto the coprocessor are
configured in the task table in the shell, which contains
among others the resource budget per task. Fig. 4 depicts
how the task scheduler selects a new task from the task
table upon a GetTask request from the coprocessor:
1. Active task. The active task may continue if there is

more work to do for the active task, i.e. the task is

‘runnable’, and if it still has sufficient budget (as
identified by the ‘running budget’ variable);

2. Next task. If the active task cannot continue, the
scheduler selects the next runnable task from the task
table in round-robin order.

The running budget is discarded when the active task
blocks on communication. The next task starts immedi-
ately when the blocking task returns to the scheduler. This
way, tasks with sufficient workload can use the excess
computation time by spending their budget more often.

RunningBudget = Budget[TaskId]
return TaskId

RunningBudget > 0
&& Runnable[TaskId] ?

return TaskId

GetTask

RunningBudget – –

Clock Event

Y N

TaskId ++ mod NrTasks

Runnable[TaskId]?
N

Y

Fig. 4. Task scheduling algorithm.

The shell, including its task scheduler, does not inter-
pret the media data and has no notion of data packets.
Data packet sizes may vary per task and packet size can be
data dependent. Thus, the task scheduler cannot determine
in advance whether a task can complete a processing step.
Therefore, the runnable test of Fig. 4 provides a ‘best
guess’ by considering both the available data and room in
the stream buffers as well as on denied data access (For
details, see [21]). Section 4.3 shows that this information
is locally available in the shell. Task scheduling with this
runnable test can be effective by selecting the right tasks in
the majority of the cases, and recover with a limited pen-
alty otherwise.

4.3. Stream synchronization

From the coprocessor point of view, a data stream
looks like an infinite tape of data, with a current ‘point of
access’. With the GetSpace call, the coprocessor asks the
shell permission to access a certain data space ahead of
this current point of access. Here, data space signifies
available data for reading from an input data stream, re-
spectively available room for writing data to an output
stream. If the shell grants permission, the coprocessor can
perform Read or Write actions inside its requested space,
with variable-length data (through the n_bytes argu-
ment), and on random access positions (through the off-
set argument). If the shell does not grant permission, the
GetSpace call returns false. After one or more
GetSpace calls—and optionally several Read/Write ac-
tions—the coprocessor can decide it is finished with proc-

essing (some part of) the data space and issue a PutSpace
call. This call advances the point-of-access a certain num-
ber of bytes ahead, in size constrained by the previously
granted space. Fig. 5 depicts this process.

a: Initial situation of ‘data tape’ with current access point:

b: GetSpace action provides window on requested space:

c: Read/Write actions on contents:

d: PutSpace action moves access point ahead:

n_bytes2

offset

n_bytes1

Fig. 5. Synchronization and data I/O through a
single port.

Communicating a stream of data requires a FIFO
buffer, which in our case has a finite and constant size. It
is pre-allocated in shared on-chip memory. The shell ap-
plies a cyclic addressing mechanism for proper FIFO be-
havior in the linear memory address range, using the
n_bytes and offset arguments of the Read/Write calls
in addition to the current access point and the buffer size.
Fig. 6 depicts the fixed size cyclic memory space used as
FIFO.

Space filled with data

Empty space

A B

Granted window
for producer

Granted window
for consumer

Fig. 6. Basic stream mapped to a finite FIFO.

The rotation arrow in the center of Fig. 6 depicts the
direction in which GetSpace calls confirm the granted
window for Read/Write, which is the same direction in
which PutSpace calls move the access points ahead. The
small arrows denote the current access points of tasks A
and B. In this example, A is a producer and hence leaves
proper data behind, whereas B is a consumer and leaves
empty space (i.e. already consumed data) behind. The
shaded region ahead of each access point denotes the ac-
cess window acquired through GetSpace.

Tasks A and B may proceed at different speeds, and/or
may not be serviced for some period in time while other
tasks execute on the multi-tasking coprocessors. The shells
provide sufficient information to maintain the respective
ordering of the access points A and B, or more strictly, to
ensure that the granted access windows never overlap. It is

the responsibility of the coprocessors to adhere to the in-
formation provided by the shell, thereby maintaining over-
all functional correctness. For example, the shell may
sometimes answer false on GetSpace requests from the
coprocessor, due to insufficient available space in the
buffer. The coprocessor should then honor the denied re-
quest for access, and refrain from issuing Read/Write calls
on the requested space. If GetSpace returns false, the
coprocessor is free to decide on how to react. Possibilities
are:
• Try a new GetSpace with a smaller n_bytes argu-

ment.
• Wait for a moment and then try again.
• Quit the current task and allow another task on this

coprocessor to proceed by calling GetTask.
This allows the decision for task switching to depend upon
the expected arrival time of more data and the amount of
internally accumulated state with associated state saving
cost. For non-programmable dedicated hardware coproc-
essors, this decision is part of their architectural design
process.

Each shell locally contains the configuration data for
the streams that are incident with tasks mapped on its co-
processor and locally implements all the control logic to
properly handle this configuration data. The shells imple-
ment a local stream table that contains a row of fields for
each stream, or more precisely, for each access point. To
handle the setup of Fig. 6, the coprocessor shells of tasks
A and B each contain one such row, holding the following
fields:
• A ‘space’ field containing a (maybe pessimistic) dis-

tance from its own point of access towards the other
point of access in this buffer. The corresponds to the
amount of available data for reading or the available
room in the buffer for writing;

• An ID denoting the remote shell with the task and port
of the other point-of-access in this buffer.

Coprocessor A

Shell

Communication network

space – = n

PutSpace(n)

Coprocessor B

Shell

space + = n

GetSpace(m)

Message: putspace(id, n)

(m ≤ space)?

Fig. 7. Updating local space values
and sending putspace messages.

As shown in Fig. 7, the shell can answer a GetSpace
request immediately and locally by comparing the re-
quested size m with the locally stored ‘space’ value. When
the shell of coprocessor A receives a PutSpace request, it
locally decrements its space field with the indicated

amount n and sends a ‘putspace’ message to the shell of
coprocessor B. This remote shell holds the other point-of-
access and increments its space field upon reception of
such a ‘putspace’ message.

4.4. Data transport

The coprocessors transport all media data to and from
their shells through the Read and Write primitives. The
shells subsequently access data in the shared stream buff-
ers in on-chip memory. With the Read and Write primi-
tives, the shell hides aspects such as the width of system
data paths, data alignment and cyclic buffer addressing,
and data stream caching including coherency and pre-
fetching control. Hereto, each stream entry in the stream
table of Section 4.3 contains the current access point and
the size of the stream buffer. Moreover, the shell incorpo-
rates separate read and write caches that play an important
role in uncoupling the coprocessor read and write ports
from the global communication network.

The GetSpace/PutSpace synchronization mecha-
nism explicitly controls cache coherency, fully transparent
to the coprocessor. Using local GetSpace and PutSpace
events for explicit cache coherency control results in a
simple and efficient implementation in comparison with
existing generic coherency mechanisms such as bus
snooping. The cache coherency mechanism builds on three
key observations:
1. The access window, which is granted to a task port

onto stream data, is guaranteed to be private. Thus,
Read/Write operations in this area are safe and do
not require intra-processor communication.

2. Local GetSpace requests extend the access window,
obtaining new memory space in the cyclic buffer.
Data in the cache that corresponds to this new mem-
ory space possibly needs invalidation. A subsequent
Read action on such a cache location then results in a
cache miss, upon which the cache loads fresh valid
data from the cyclic buffer.

3. Local PutSpace requests reduce the access window,
leaving new memory space to a successor in the cyclic
buffer. Dirty data in the cache that corresponds to the
memory space in the reduction interval needs to be
flushed to the cyclic buffer to make the local data
available for other processors. Sending the ‘putspace’
message to another coprocessor must be postponed
until the cache flush is completed and safe ordering of
memory operations can be guaranteed.

Apart from cache coherency, the shell also initiates
stream prefetches upon local GetSpace and Read re-
quests to reduce cache miss penalty. The memory space
difference between the n_bytes arguments of subsequent
GetSpace calls—as outlined in observation 2—is suffi-
cient for functional correct invalidation and prefetching

behavior. However, the valid memory space in the stream
buffer is typically larger than the number of bytes asked
for by GetSpace requests. This valid memory space is
also available locally in the shells through the Space field
in the stream table. The Eclipse shells use this field to
further reduce the number of invalidates and extend the
region from which valid data can be prefetched.

5. Eclipse instance

Fig. 8 depicts a first instantiation of the Eclipse tem-
plate, to be deployed as an MPEG subsystem in SoC plat-
forms aimed at high-definition television functionality, e.g.
the Philips Nexperia line of chips for digital video [16].
This Eclipse instance targets decoding of two high-
definition (HD) MPEG-2 streams simultaneously, or stan-
dard definition (SD) MPEG-2 encoding in parallel with
decoding a number of SD MPEG-2 streams. Various com-
binations are possible, such as decoding one HD stream
and decoding four SD streams in parallel, or transcoding
for time-shift functionality. The CPU is responsible for
configuring these applications at run-time by programming
the stream and task tables in the shells.

Data transfer

DCTDCTRLSQRLSQVLDVLD

ArbiterArbiter

On-chip
Memory
On-chip
Memory

DSP
CPU
DSP
CPU

I$ D$

System bus hubSystem bus hub

System bus

Synchronization

MC/MEMC/ME

ShellShellShellShellShellShellShellShell ShellShell

Fig. 8. Eclipse instance for video coding.

The figure shows dedicated hardware units for MPEG
processing. These coprocessors are multi-tasking and
weakly programmable, e.g. the DCT coprocessor can
time-share both the forward and inverse DCT functions of
one or more MPEG encoding applications and the inverse
DCT of one or more decoding applications. Equivalently,
the RLSQ coprocessor performs the run-length decoding,
inverse scan, and inverse quantization of the MPEG-2
decoding graph, as well as the encoding variant: quantiza-
tion, zigzag scan and run-length encoding. The motion
compensation/motion estimation (MC/ME) coprocessor
has a dedicated connection to the system bus to access
MPEG reference frames in off-chip memory. Similarly,
the VLD coprocessor fetches the incoming compressed
bit-streams from off-chip memory. Audio decoding, vari-
able length encoding, and de-multiplexing are executed in
software on the CPU.

The flexible connection of medium-grain functions re-
quires a significant communication bandwidth from the
system. For this instance, the targeted applications allow
the use of a single on-chip memory (SRAM) for commu-
nication buffering with a wide data-path to provide the
necessary bandwidth. For instances demanding a higher
communication bandwidth, the architect must balance the
flexibility of allocating buffers with configurable sizes in a
centralized memory versus the scalability, and perform-
ance of distributed memory implementations.

The full architecture is simulated in a flexible cycle-
accurate simulator, accompanied by graphical tools for
configuring application graphs and analyzing system be-
havior.

6. Conclusion

Eclipse introduces a cost-effective and scalable tem-
plate for subsystems consisting of an adjustable mix of
hardware and software modules. It allows reuse of com-
putation hardware over a set of media applications that
combine real-time and dynamic behavior. These charac-
teristics are achieved by a novel approach which combines
distributed multi-tasking and distributed synchronization.
A scalable hardware implementation supports high task
switch and synchronization rates.

These concepts have been explored in a first instantia-
tion of the Eclipse template for simultaneous MPEG-2
encoding and decoding of multiple streams at various
resolutions. Currently, we are studying extensions towards
MPEG-4 and 3D graphics functionality [22], such that a
single Eclipse subsystem can support a programmable mix
of MPEG-2, MPEG-4 and 3D graphics applications in a
system-on-silicon platform.

References

[1] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming”, Proc. of Information Processing ‘74,
August 5-10, Stockholm, Sweden, North-Holland publ.
Co., pp. 471-475, 1974.

[2] G. Kahn and D.B. MacQueen, “Coroutines and Networks
of Parallel Programming”, Proc. of Information Processing
‘77, North Holland publ., pp. 993-998, 1977.

[3] B. Kienhuis, E. Rijpkema, and E.F. Deprettere, “Compaan:
Deriving Process Networks from Matlab for Embedded
Signal Processing Architectures”, 8th Int. Workshop on
Hardware/Software Codesign (CODES), May 3-5, 2000,
San Diego, CA, USA.

[4] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems”, Int. Journal of Computer Simu-
lation, special issue on “Simulation Software Develop-
ment”, vol. 4, pp. 155-182, April 1994.

[5] S. Panchanatan, O. Fatemi, and T.M. Le, “Survey of Ar-
chitectures for Media Processing”, SPIE Conf. on In-

put/Output and Imaging Technologies, vol. 3422, pp.199-
209, July 1998, Taipei, Taiwan.

[6] P. Pirsch and H.J. Stolberg, “Implementation of Media
Processors”, IEEE Signal Processing Magazine, vol. 14,
no. 4, pp. 48-51, July 1997.

[7] I. Kuroda and T. Nishitani, “Multimedia Processors”, Proc.
of the IEEE, vol. 86, no. 6, pp. 1203-1221, June 1998.

[8] H. Liao and A. Wolfe, “Available Parallelism in Video
Applications,” 30th Annual Int. Symposium on Microar-
chitecture, Dec. 1997.

[9] S. Rathnam and G. Slavenburg, “Processing the New World
of Interactive Media”, IEEE Signal Processing Magazine,
vol. 15, no. 2, pp. 108-117, March 1998.

[10] J.T.J. van Eijndhoven, et al., “TriMedia CPU64 Architec-
ture”, Proc. Int. Conf. on Computer Design (ICCD ‘99),
Austin, Texas, pp. 586-592, October 10-13, 1999.

[11] W. Lee and C. Basoglu, “MPEG-2 Decoder Implementation
on MAP-CA Mediaprocessor using the C Language”, Proc.
of the SPIE: Media Processors 2000, vol. 3970, Jan. 2000.

[12] P. Kalapathy, “Hardware/Software Interactions on Mpact”,
IEEE Micro, vol. 17, no. 2, pp. 20-26, March/April 1997.

[13] E.G.T. Jaspers and P.H.N. de With, “Architecture of Em-
bedded Video Processing in a Multimedia Chip-set”, Proc.
of IEEE Int. Conf. on Image Proc,(ICIP 99), vol. 2, pp.
787-791, Oct. 1999, Kobe, Japan.

[14] V.M. Bove, Jr. and J.A. Watlington, “Cheops: A reconfigu-
rable Data-flow System for Video Processing”, IEEE trans.
On Circuits and Systems for Video Technology, vol. 5, no.
2, pp. 140-149, April 1995.

[15] G. de-Haan, J. Kettenis, A. Loning, and B. De-Loore, “IC
for motion-compensated 100 Hz TV with natural-motion
movie-mode”, IEEE Trans. on Consumer Electronics, vol.
42, no. 2, pp. 165-174, May 1996.

[16] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A Multi-
processor SOC for Advanced Set-Top Box and Digital TV
Systems”, IEEE Design and Test of Computers, pp. 21-31,
September-Oct. 2001.

[17] D. Wingard and A. Kurosawa, “Integration Architecture for
System-on-a-Chip Design”, Proc. of the IEEE 1998 Custom
Circuits Conference, pp. 85-88, May 1998

[18] D.C. Wyland, “Media Processors Using a New Microsys-
tem Architecture Designed for the Internet Era”, Proc. of
the SPIE: Media Processors 2000, vol. 3970, pp. 2-15, Jan.
2000.

[19] R.J. Grove, G.J. Hewlett, and D.B. Doherty, “The MVP: A
Single-Chip Processor for Advanced Television Applica-
tions”, Proc. of the Int. Workshop on Signal Processing of
HDTV, vol. 6, pp. 479-487, Oct. 1994, Turin, Italy.

[20] O.P. Gangwal, A. Nieuwland, and P. Lippens, “A Scalable
and Flexible Data Synchronization Scheme for Embedded
HW-SW Shared-Memory Systems”, Int. Symp. On System
Synthesis (ISSS), pp. 1-6, Montréal, Canada, Oct. 2001.

[21] M.J. Rutten, J.T.J. van Eijndhoven, E.J.D. Pol, “Robust
media processing in a flexible and cost-effective network of
multi-tasking coprocessors”, Euromicro Conf. on Real-
Time Systems, Vienna, Austria, submitted for publication.

[22] E.B. van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4
decoding on a flexible architecture platform”, Media Proc-
essors 2002, vol. 4674, Jan. 2002, San Jose, CA, USA.

	Introduction
	Media processing applications
	Media processing architectures
	Performance and granularity of parallelism
	Performance and granularity of synchronization
	Flexibility and programmability
	Flexibility and reuse
	Design cost and scalability

	Eclipse architecture template
	Coprocessor shell
	Multi-tasking
	Stream synchronization
	Data transport

	Eclipse instance
	Conclusion

