
Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia),
Sept. 6-7, Stockholm, Sweden.

http://www.ece.cmu.edu/~sld/ESTIMedia/

Application Design Trajectory towards Reusable Coprocessors
MPEG Case Study

Martijn Rutten, Om Prakash Gangwal, Jos
van Eijndhoven

Philips Research Laboratories
Prof. Holstlaan 4, 5656AA Eindhoven

The Netherlands
martijn.rutten@philips.com

Egbert Jaspers
LogicaCMG

Kennedyplein 248,
5611ZT Eindhoven

The Netherlands

Evert-Jan Pol

Philips Semiconductors
Prof. Holstlaan 4, 5656AA

Eindhoven
The Netherlands

Abstract
This paper presents a structured application design

trajectory to transform media-processing applications—
modeled as Kahn process network—into a set of function-
specific hardware units called coprocessors. The pro-
posed design trajectory focuses on identifying hardware-
implementable computation kernels that are common for
a predetermined set of applications. The design trajectory
is exercised in a case study that maps MPEG video de-
coding and encoding applications onto a set of coproces-
sors in a heterogeneous multiprocessor architecture. The
resulting set of coprocessors can simultaneously perform
both encoding and decoding functions for multiple
MPEG-2 streams in an estimated 4 mm2 (excluding mem-
ory) in 0.18µ technology

1. Introduction

Emerging consumer-electronics products need to sup-
port a mix of media processing applications, such as the
combination of MPEG encoding and decoding in a set-top
box with time-shift functionality. State-of-the-art media
processing systems-on-a-chip (SoC) exploit the perform-
ance density of hardwired function modules to implement
critical parts of these targeted applications [10]. Currently,
such function modules are application specific, e.g., an
MPEG-2 decoding module only decodes MPEG-2 streams
and cannot be reused for MPEG-4 decoding or MPEG-2
encoding applications. This restricts the flexibility of the
system to cope with evolving application standards or
variations of the required application set within a product
family.

MPEG-2 and MPEG-4 applications contain computa-
tion kernels such as the discrete cosine transform (DCT)
that are generic for the media-processing application do-
main. However, current SoC designs need to implement
multiple instances of such potentially reusable computa-
tion kernels, since the kernels form an integral—and
therefore inaccessible—part of each function module. To
increase the flexibility of mapping applications onto SoC

function modules, we advocate lowering the function
granularity from the coarse application level to the me-
dium-grain level of individual computation kernels. The
resulting computation kernels are typically implemented
as function-specific hardware blocks, or coprocessors. A
flexible network of such coprocessors constitutes the new
function module. Hence, such a function module com-
prises a second hierarchical level of inter-processor com-
munication. Deployment of medium granularity coproces-
sor hardware in a function module enables three types of
potential reuse:
1. Reuse of coprocessor hardware in a function module

over different applications by time-shared execution.
A typical example is the combined execution of
MPEG-2 encoding and decoding by a single function
module.

2. Reuse of coprocessor hardware in a function module
for new applications that were unknown when the co-
processors were created. Defining coprocessors for
this kind of reuse is typically only possible by includ-
ing at least some programmability in the coprocessors.

3. Reuse of existing coprocessor hardware in the design
of a new function module. An example is the deploy-
ment of MPEG coprocessors in a 3D graphics module
for scaling and motion compensation.
In this paper, we exploit the first form of reuse, where

the desired set of applications is known up-front. Never-
theless, the medium function granularity allows us to de-
fine coprocessors that will often be generic for the appli-
cation domain and form good candidates for the second
and third forms of reuse. In case of the targeted run-time
reuse over applications of the same hardware, our area
estimates show a significant increase in efficiency over
monolithic designs. Moreover, the efficiency per applica-
tion of such multi-coprocessor function modules is not
significantly lower when compared to monolithic designs.
Furthermore, while the finer grain of the design slightly
increases latency and power consumption, it does not ad-
versely affect throughput.

2. Related work

Clearly, choosing a fine function granularity for a co-
processor (e.g. to compute a sum of absolute differences
in MPEG motion estimation) facilitates reuse. However,
the overhead of the infrastructure (e.g. to transport and
synchronize data access) becomes relatively large. There-
fore, fine-grain hardware acceleration is often embedded
in RISC or VLIW cores in the form of complex function
units [1]. However, the overall performance increase and
reduction in power consumption with such compile-time
scheduled function units is limited. A coarse-grain co-
processor such as an MPEG-2 decoder [10] may incur
significantly less overhead, but is difficult if not impossi-
ble to reuse over a set of similar applications.

Balancing coprocessor reuse versus overhead incurred
in a generic infrastructure demands a thorough under-
standing of the application domain and architecture at
hand. Oftentimes, application information is only avail-
able as sequential, complex and ill-documented C-code,
e.g., obtained as reference implementation from a stan-
dardization body. Extracting reusable computation kernels
eligible for coprocessor implementation requires exten-
sive restructuring of the application. This software devel-
opment trajectory of mapping an application onto a hard-
ware architecture requires a considerable amount of soft-
ware engineering effort and calls for a structured
approach.

We adopt Kahn process networks [6][7] as the model
of computation. Ptolemy [3] provides an integrated
framework for specification and analysis of, among oth-
ers, applications modeled as Kahn process network. Mod-
eling languages such as SystemC [12] allow a gradual
transformation from sequential code and Kahn-style mod-
els towards a hardware implementation. However, how to
do this transformation process remains implicit.

This paper proposes a structured approach to gradually
transform application C-code into reusable coprocessors.
Hereto, the design trajectory in Section 3 focuses on ex-
tracting hardware-implementable computation kernels that
are common for a set of applications. Section 4 exempli-
fies the transformation process in a case study for time-
shared MPEG-2 decoding and encoding. Finally, Section
5 outlines the initial results.

3. Proposed design trajectory

Figure 1 gives the trajectory that is followed to gradu-
ally transform a set of applications written in a high-level
programming language (such as C) into behavioral mod-
els of the coprocessor hardware. Oftentimes, particular
applications are transformed more than once to different
hardware architectures over time. During this software-
mapping trajectory, the code is restructured significantly
on behalf of optimization. Optimized code has little or no

reusability over different hardware platforms. Therefore,
our software development trajectory is designed to pro-
mote reuse at various levels of optimization. The follow-
ing sections detail the transformation stages indicated in
Figure 1.

Application C codeApplication C code

Coprocessor 1Coprocessor 1

Function

Control

Architecture-
tailored process

network

Generic process
network

Application C codeApplication C code

Coprocessor NCoprocessor N

Function

Control

Figure 1 Proposed design trajectory.

3.1. Generic process network stage

The first step is making parallelism and communica-
tion explicit in the application. The application code is
transformed into a generic process network of an applica-
tion, written in YAPI [7]. A YAPI application is specified
in C/C++ as a set of concurrent processes that communi-
cate through buffered communication channels, similar to
a Kahn Process Network [6]. For communication, each
process calls read and write primitives on their input and
output ports that connect to the communication channels.
With the read primitive, the process consumes data in
FIFO order from the channel or blocks when no data is
available. The process produces data into the channel
through the write primitive. This style of structuring ap-
plications fits well with the streaming and data-dependent
nature of the targeted media-processing applications.

The target hardware architecture influences the choice
of the algorithm and its partitioning into functional enti-
ties. However, a ‘generic’ model of an application is in-
dependent of other applications that may run on the target
hardware, and has minimal dependency on the target
hardware architecture. Once the generic model is avail-
able, this becomes the foundation for any further applica-
tion development. This is similar to having ‘reference C-
code’ as a basis for optimizing code towards a program-
mable platform. Moreover, the step of transforming an
application into generic YAPI provides the insight into
the structure and behavior of the application that is needed
for mapping the application onto the architecture at hand.
The generic YAPI model with its clean structure of paral-

lel tasks and explicit communication can be reused over
different architecture-definition projects. For instance, the
MPEG-2 decoder model of Figure 2 has been used as
starting point in very different settings: design space ex-
ploration of a dedicated MPEG-2 accelerator [13], data-
parallel execution on a multi-DSP architecture [4], and the
definition of the instruction set of a prototype 64-bit
TriMedia processor [5].

3.2. Architecture-tailored process network stage

The second transformation step towards a hardware
implementation contains the rewriting of the generic
YAPI model into the architecture-tailored process net-
work of the application. Here, the generic YAPI model is
restructured such that subsequently it can be mapped onto
the target architecture. Note that when an application is
later mapped onto other architectures, the generic YAPI is
again restructured to match the characteristics of the ar-
chitecture at hand.

A key aspect of the transformation is that several ap-
plications are restructured concurrently to make the ge-
neric computation kernels explicit. These computation
kernels form the candidates for coprocessor implementa-
tion. This may involve changing the actual application
algorithms to extract common application kernels, as il-
lustrated in Section 4.2.

3.3. Coprocessor design stage

The architecture-tailored model forms the starting
point for hardware development. To aid the process of
modeling the target hardware blocks, the YAPI code is
separated into two parts: a control part with the YAPI
read and write commands, and a part with bare functions.
The bare functions provide the functionality of the target
hardware, stripped from communication-dependent con-
trol aspects. The bare functions (e.g. the computation of a
DCT) are reused as is in the hardware definition, while

the control part must be rewritten to match the specific
communication architecture of the target.

decMV_prop_pred
decMV_prop_mv Tinput Tvld

Thdr

Tisiq Tidct Tadd TwriteMB

Toutput

ToutputRD

Tpredict

TpredictRD

TdecMV
vld_bits

vl
d_

pr
op

_s
eq

vl
d_

pr
op

_p
ic

vl
d_

pr
op

_s
lic

e

vl
d_

cm
d

is
iq

_p
ro

p_
pi

c

de
cM

V_
pr

op
_s

eq

pr
ed

ic
t_

pr
op

_p
ic

de
cM

V_
pr

op
_p

ic

hd
r_

st
at

us

is
iq

_p
ro

p_
se

q
is

iq
_p

ro
p_

m
b

mb_QFS

predict_prop_pred
predict_prop_seq

mb_F mb_f mb_d

m
b_

p

idct_prop_seq
idct_prop_mb

add_prop_seq
add_prop_mb

writeMB_prop_seq
writeMB_prop_mb

memMan_prop_seq

memMan_cmd
writeMB_mem_id

predict_ref_mem_id

ou
tp

ut
_p

ro
p_

se
q

TmemMan

ou
tp

ut
_c

m
d

m
em

M
an

_r
dy

_m
em

_i
d

MPEG-2
Video

Elementary
Stream

Decoded
frames

w
rit

eM
B_

pr
op

_p
ic

predict_mv

predict_data

output_data

Tstore

store_data

pr
ed

ic
tR

D
_c

m
d

outputRD_cmd

Figure 2. Generic MPEG-2 decoder model.

In our case study, communication channels between
application processes are mapped onto data streams with
communication buffers allocated in shared on-chip mem-
ory. The coprocessor designer needs to explicitly decide
on the granularity of synchronizing access to these buffers
when rewriting the YAPI read and write primitives into
the communication primitives offered by the target archi-
tecture [11].

The design of coprocessor control includes the design
of the data streams. For the architecture to be flexible,
tasks running on the function-specific coprocessors have
to support being connected into various graphs. The pos-
sibilities for reconnection increase dramatically if all
streams are based on a uniform syntax that all coproces-
sors understand. A packet formatting of the data streams
provides a common way to handle (dynamically) variable-
size data chunks.

We designed the data streams as a stream of variable-
length packets, consisting of a 2-byte header field next to
a 1 to 255-byte payload. The header field gives the size of
the payload and indicates the packet type. Using the
header information, the coprocessor can decide to process
the packet as basic media data, interpret it as meta-data
and update the task state, or forward the packet to the sub-
sequent coprocessor in the application pipeline. With such
a packet formatting, the coprocessor designer may choose
to interleave packets from different application streams in
a single stream to reduce buffer-memory requirements and
synchronization overhead.

4. MPEG-2 analysis and transformation

This section presents a case study for the design tra-
jectory of Section 3. The following subsections show the
transformation steps from generic YAPI models to behav-
ioral coprocessor models for two applications: MPEG-2
video decoding and encoding.

4.1. Generic decoder and encoder models

Figure 2 depicts the generic MPEG-2 decoder YAPI
model [13], derived from C-software of the UC Berkeley
MPEG decoder. The creation of this generic YAPI model
involved an extensive restructuring of the functions and
data structures in the sequential C-code to make parallel-
ism and dependencies explicit.

The process Tvld parses an MPEG bitstream under
control of a process Thdr. The Thdr process distributes
the retrieved sequence and picture properties to other
processes. The Tvld process sends motion vectors into a
functional pipeline (TdecMV, Tpredict) that retrieves the
prediction data for the reconstruction of macroblocks. The
coefficient data for the error blocks is sent into a second
functional pipeline for run-length decoding, inverse scan,
inverse quantization, and inverse DCT (Tisiq, Tidct). The
grain size of this coefficient data is a macroblock. A mem-
ory manager process Tmemman controls the access to the
frame memories.

Figure 3 depicts the generic MPEG-2 encoder model,
derived from reference C-code of Philips’ EMPRESS
encoder [2] The depicted encoder accepts raw picture data
as input. The difference of the input data with motion
compensated predication data is sent through a functional
pipeline of forward DCT, quantization, run-length encod-
ing, and finally variable-length encoding. A second func-
tional pipeline performs inverse quantization, inverse
DCT, and motion compensation to create the predication
data for the next input. Both pipelines operate at a mac-
roblock granularity. The memory manager is responsible
for synchronizing access to the frame memories.

4.2. Architecture-tailored decoder and encoder
models

The choice of coprocessors is influenced by the tar-
geted performance of the MPEG-2 decoding and encoding
applications. The described function module targets con-
current decoding of two high-definition (HD) MPEG-2
bitstreams. Moreover, the coprocessors should also be
capable of simultaneous encoding and decoding standard
definition (SD) MPEG-2 streams.

A typical hardware-software codesign problem is the
trade-off between load on the control processor (CPU)
and the complexity of coprocessor control as implemented
in its hardware. The load on the control processor for co-
processors operating on a macroblock or sequence granu-
larity is clearly too large for simultaneous decoding of
two (worst-case) HD sequences. Therefore, the coproces-
sors are designed to run independently for at least an en-
tire MPEG frame. This decision implies that macroblock
and slice properties must be provided to the coprocessors
through regular input streams. Picture and sequence prop-
erties may be provided through separate auxiliary input
streams, thereby removing the dependency on the Thdr
process of Figure 2.

prop_pic

mb_pixels

motion
comp.

subtract

scan /
quant.

prop_mb
blk_diffpixels

DCT

prop_mb

run
length
enc.

motion
estim.

motion
comp.
add

inverse
scan /
quant.blk_diffpixels

prop_pic

inverse
DCT

prop_mb

blk_coeffs

pr
op

_m
b

pr
op

_p
ic

rl_
pa

irs

memory
manager

bits

blk_coeffs

motion_vectors

pr
op

_m
b pr

op
_p

ic

m
b_

pi
xe

ls

read_cmnd
mb_pixels

mb_pixels
read_cmnd

mb_pixels

write_cmnd
mb_pixels
read_cmnd

m
b_

qc
oe

ffs

pr
op

_m
b

pr
op

_p
ic

prop_mb
mb_qcoeffs

prop_pic

variable
length
enc.

prop_pic

Figure 3. Generic MPEG-2 encoder model.

For the DCT, scan, and quantization, both the forward
and inverse functions can be implemented with exactly
the same hardware, only requiring different constants and
quantization tables. For the DCT function to be reusable
in the decoder as well as in the forward and inverse path
of the encoder, it needs to be implemented stand-alone.
However, run-length, scan, and quantization may be com-
bined into a single coprocessor to keep the communica-
tion between these functions local in the coprocessor.

The MPEG decoder of Figure 2 implements the se-
quence of run-length decoding, inverse scan, and inverse
quantization. Since run-length encoding is lossless, and
the silicon area for run-length encoding/decoding is very
small, run-length encoding in the forward path of Figure 3
can be done before forking off the inverse path. The en-
coder model needs to be restructured to implement this
behavior. However, this new structure significantly re-
duces communication buffer requirements of the encoder
as the stream buffer between the forward and inverse path
remains in the compressed domain.

4.3. MPEG coprocessor design

This section describes the internal architecture of the
coprocessors for MPEG decoding and encoding. Based on
the analysis in Section 4.2, we decided upon a 4-
coprocessor model: variable-length decode (VLD), run-
length, scan and quantization (RLSQ), discrete cosine
transform (DCT), and motion compensation/estimation
(MC/ME). The RLSQ, DCT, and MC/ME coprocessors

should be effective for both MPEG-2 decoding and en-
coding. Variable-length encoding (VLE) for MPEG-2
encoding is to be implemented in software.

Variable-length decoding (VLD)
The VLD parses an MPEG-encoded video bitstream.

From this bitstream it extracts both the basic video data to
be passed to the RLSQ unit, as well as control information
contained in macroblock and picture headers, such as
quantization parameters. All this information is decom-
pressed and sent into the appropriate stream buffers. This
control information will change some of the internal state
of the coprocessors later in the pipeline. Sending this in-
formation as packets through the buffered streams is an
important prerequisite for the concurrent (pipelined) op-
eration of all MPEG coprocessors.

The application throughput requirement for dual
stream high-definition decoding requires dedicated hard-
ware to achieve sufficient speed in the innermost loops of
the decoding process. However, to handle the less fre-
quent (control) data around that, the parsing and decom-
pression can be handled in software. If the hardware for
the innermost loops is equipped with programmable ta-
bles, then the combination with software processing of the
outer parts allows for multi-standard decoding, ranging
from MPEG(-1, -2, -4) to DV. Therefore, we map the
parsing process Thdr to a small, dedicated RISC core, and
compression process Tvld to dedicated VLD hardware.

The interfaces between the RISC core and the VLD
engine are such that the VLD engine replies on commands
from the RISC core. Such commands are like: ‘provide
me with the initial bits currently heading the bitstream’,
‘advance the bitstream by n bits’, ‘send these provided
bits into the output stream’, and ‘decode the block-data in
the bitstream to the output and reply with a ready-code’.

Run-length, scan, and quantization (RLSQ)
The RLSQ coprocessor combines run-length decoding

and encoding, zigzag scanning, and quantization func-
tions. In case of encoding, the input to this coprocessor is
a DCT coefficient block and output is run-level pairs. For
decoding, the input is run-level pairs and output is a (pos-
sibly scaled/smaller) coefficient block.

scanscanRLDRLD

0 = decoding path
1 = encoding path

0

1

quantquant RLERLE

0

1

scan
table
scan
table

quant
table

quant
table

Figure 4. RLSQ coprocessor architecture.

The order of execution of scanning and quantization is
different for encoding and decoding. However, the same
implementation can support both encoding and decoding

since the order of execution does not change the outcome
of these operations. The run-length encoding (RLE) func-
tion and run-length decoding (RLD) functions are instan-
tiated separately (Figure 4).

The RLSQ coprocessor operates on the granularity of
DCT blocks and can switch tasks after producing one
such DCT block. However, to enable multi-tasking, the
coprocessor must take care of the internal state of each
task, formed by the quantization and scanning tables. The
VLD writes these tables in a stream buffer in the on-chip
memory. At the start of a new task, the RLSQ coprocessor
(re)loads the tables from this buffer into its local table
memory. The previous tables do not need to be saved
upon a task switch. The separation of data transport and
synchronization in the communication infrastructure [11]
allows the tables to remain in the stream buffer until the
coprocessor explicitly frees the memory space by syn-
chronizing with the VLD.

Discrete cosine transform (DCT)
The DCT coprocessor includes inverse and forward

DCT functions. It operates on the DCT block level and
does not require any knowledge of the picture properties
or sequence properties. It supports both scaling and block
compression. The internal state of this coprocessor is void
after processing a DCT block. Consequently, the coproc-
essor can switch tasks on a block-level granularity with-
out requiring additional hardware for state save/restore.

We chose the LLM algorithm [9] to implement both
forward and inverse DCT functions. The LLM algorithm
shares the same constants for multiplication in both in-
verse and forward DCT. Therefore, a DCT coprocessor
can use the same data path for the implementation of in-
verse and forward DCT.

Motion compensation/estimation (MC/ME)
To efficiently compress video signals, MPEG exploits

the temporal correlation between successive pictures. In a
linear-wise scanning of the pictures from the left to the
right and top to bottom, successive blocks of 16x16 pixels
(macroblocks) are predicted from previously decoded
pictures. Because these HD reference pictures are too
large for on-chip storage, they are located in off-chip
SDRAM memory. Consequently, the MC/ME coprocessor
requires a connection to this off-chip memory to fetch the
prediction data and to write the reconstructed pictures that
are used as reference for the decoding of successive pic-
tures (modeled as TpredictRD and Tstore in Figure 2).

Figure 5 depicts the internal architecture of the
MC/ME coprocessor. To share the hardware resources for
prefetching and interpolation, motion estimation and mo-
tion compensation are joined in one coprocessor. The pre-
fetch and write units of Figure 5 embed sufficient buffer-
ing to hide the large access delay of the SoC infrastruc-
ture. The prefetch unit can work ahead of the MC/ME unit

by processing motion vector data provided by the VLD in
a separate stream.

CacheCache BufferBuffer

SoC infrastructure

InterpolationInterpolation
MC

specific
MC

specific

Coprocessor communication infrastructure

ME
specific

ME
specificPrefetch unit MC/ME unit

BufferBuffer

Write unit

Figure 5. MC/ME coprocessor architecture.

The prefetch unit copies prediction data from the
cache to its buffer. Although caching of stream-oriented
data is generally not effective, the use of an SDRAM
memory introduces some temporal locality due to its in-
herent transfer overhead. This can be exploited to reduce
some of the scarce memory bandwidth. Our experiments
show that a relatively small direct-mapped cache of 6 kB
reduces on average 30% memory bandwidth.

5. Results

S
oC

 in
fra

st
ru

ct
ur

e

On-chip memoryOn-chip memory

DCTDCTRLSQRLSQVLDVLD MC/MEMC/MECPU/
DSP
CPU/
DSP

Coproc communication
infrastructure

IFIFIFIF IFIFIFIFIFIF

Figure 6. Resulting MPEG function module.

The generic decoder and encoder models have been
reused in a number of architecture analysis and definition
projects such as [4], [5], and [13]. To support the design
trajectory, we developed a SystemC [12] model of the
architecture that enables mixed-level simulation of YAPI
tasks, behavioral coprocessor models, and cycle-accurate
hardware models. This allows verification of functional
correctness after each transformation step. The behavioral
models of the described MPEG coprocessors reuse virtu-
ally all source code of the bare functions in the architec-
ture tailored models. Simulation runs show that the co-
processors concurrently execute encoding and decoding
tasks, reusing coprocessor hardware. The coprocessors of
Figure 6 have sufficient performance to decode two high-
definition MPEG streams in a time-shared fashion at a
150 MHz clock frequency with a total estimated coproc-
essor area of 4 mm2 in 0.18 micron CMOS technology.

6. Conclusion

This paper presents an application design trajectory to
transform sequential application C-code into a reusable
multithreaded application model. The multithreaded
model is subsequently mapped onto a target architecture
with maximal source code reuse. The design trajectory

concurrently addresses a set of applications, to identify
common compute kernels that qualify for generic coproc-
essor implementations. Thereby, the presented trajectory
results in the definition of a set of multitasking coproces-
sors that can be applied for various applications within a
chosen application domain. This is demonstrated in a case
study to define novel coprocessor hardware that concur-
rently executes decoding and encoding tasks, starting
from sequential descriptions of an MPEG-2 encoder and
decoder. It is difficult to automate the design decisions
involved in the proposed design trajectory. Even so, ongo-
ing work includes the development of tools and standard-
ized APIs to reduce the effort involved in the code trans-
formations.

References
[1] M. Berekovic et al., “A Multimedia RISC Core for Effi-

cient Bitstream Parsing and VLD”, SPIE: Multimedia
Hardware Architectures, vol. 3311, pp. 131-141, Jan. 1998.

[2] W.H.A. Bruls et al., “A low-cost audio/video single-chip
MPEG2 encoder for consumer video storage applications”,
IEEE Int. Conf. on Consumer Electronics, pp. 314-315,
June 2000, Los Angeles, CA, USA.

[3] J.T. Buck et al., “Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems”, Int. Journal of
Computer Simulation: Simulation Software Development,
vol. 4, pp. 155-182, April 1994.

[4] B.K. Dwivedi et al., “Exploring Design Space of Parallel
Realizations: MPEG-2 Decoder Case Study”, 9th Int. Symp.
on Hardware/Software Codesign, pp. 92-97, April 25-27,
2001, Copenhagen, Denmark.

[5] G.J. Hekstra et al., “TriMedia CPU64 Design Space Explo-
ration”, Int. Conf. on Computer Design, pp. 599-606, Oct.
10-13 1999, Austin, Texas, USA.

[6] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming”, Information Processing ‘74, North-Holland
Publ. Co., pp. 471-475, 1974.

[7] E.A. de Kock et al., ”YAPI: Application Modeling for Sig-
nal Processing Systems”, 37th Design Automation Conf.,
pp. 402-405, June 2000, Los Angeles, CA, USA.

[8] E.A. de Kock, “Multiprocessor Mapping of Process Net-
works: A JPEG Decoding Case Study”, 15th Int. Symp. on
System Synthesis, pp. 68-73, Oct. 2-4, 2002, Kyoto, Japan.

[9] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical
Fast 1-D DCT Algorithms with 11 Multiplications”, Int.
Conf. on Acoustics, Speech, and Signal Processing, pp.
988-991, May 1989, Glasgow, England.

[10] J. Augusto de Oliveira and Hans van Antwerpen, “The
Philips Nexperia Digital Video Platform”, Winning the SoC
Revolution, Kluwer Academic Publ., pp. 67-96, 2003.

[11] M.J. Rutten, J.T.J. van Eijndhoven, and E.J.D. Pol, “Design
of Multi-Tasking Coprocessor Control for Eclipse”, 10th
Int. Symp. on Hardware/Software Codesign, pp. 139-144,
May 2002, Estes Park, CO, USA.

[12] SystemC User’s Guide, version 2.0, 2001.
[13] P. van der Wolf et al., “An MPEG-2 Decoder Case Study as

a Driver for a System Level Design Methodology”, 7th Int.
Workshop on Hardware/Software Codesign, pp. 33-37,
May 1999, Rome, Italy.

	Abstract
	Introduction
	Related work
	Proposed design trajectory
	Generic process network stage
	Architecture-tailored process network stage
	Coprocessor design stage

	MPEG-2 analysis and transformation
	Generic decoder and encoder models
	Architecture-tailored decoder and encoder models
	MPEG coprocessor design
	Variable-length decoding (VLD)
	Run-length, scan, and quantization (RLSQ)
	Discrete cosine transform (DCT)
	Motion compensation/estimation (MC/ME)

	Results
	Conclusion
	References

