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Abstract 
This paper presents a structured application design 

trajectory to transform media-processing applications—
modeled as Kahn process network—into a set of function-
specific hardware units called coprocessors. The pro-
posed design trajectory focuses on identifying hardware-
implementable computation kernels that are common for 
a predetermined set of applications. The design trajectory 
is exercised in a case study that maps MPEG video de-
coding and encoding applications onto a set of coproces-
sors in a heterogeneous multiprocessor architecture. The 
resulting set of coprocessors can simultaneously perform 
both encoding and decoding functions for multiple 
MPEG-2 streams in an estimated 4 mm2 (excluding mem-
ory) in 0.18µ technology 

1. Introduction 

Emerging consumer-electronics products need to sup-
port a mix of media processing applications, such as the 
combination of MPEG encoding and decoding in a set-top 
box with time-shift functionality. State-of-the-art media 
processing systems-on-a-chip (SoC) exploit the perform-
ance density of hardwired function modules to implement 
critical parts of these targeted applications [10]. Currently, 
such function modules are application specific, e.g., an 
MPEG-2 decoding module only decodes MPEG-2 streams 
and cannot be reused for MPEG-4 decoding or MPEG-2 
encoding applications. This restricts the flexibility of the 
system to cope with evolving application standards or 
variations of the required application set within a product 
family. 

MPEG-2 and MPEG-4 applications contain computa-
tion kernels such as the discrete cosine transform (DCT) 
that are generic for the media-processing application do-
main. However, current SoC designs need to implement 
multiple instances of such potentially reusable computa-
tion kernels, since the kernels form an integral—and 
therefore inaccessible—part of each function module. To 
increase the flexibility of mapping applications onto SoC 

function modules, we advocate lowering the function 
granularity from the coarse application level to the me-
dium-grain level of individual computation kernels. The 
resulting computation kernels are typically implemented 
as function-specific hardware blocks, or coprocessors. A 
flexible network of such coprocessors constitutes the new 
function module. Hence, such a function module com-
prises a second hierarchical level of inter-processor com-
munication. Deployment of medium granularity coproces-
sor hardware in a function module enables three types of 
potential reuse: 
1. Reuse of coprocessor hardware in a function module 

over different applications by time-shared execution. 
A typical example is the combined execution of 
MPEG-2 encoding and decoding by a single function 
module. 

2. Reuse of coprocessor hardware in a function module 
for new applications that were unknown when the co-
processors were created. Defining coprocessors for 
this kind of reuse is typically only possible by includ-
ing at least some programmability in the coprocessors. 

3. Reuse of existing coprocessor hardware in the design 
of a new function module. An example is the deploy-
ment of MPEG coprocessors in a 3D graphics module 
for scaling and motion compensation. 
In this paper, we exploit the first form of reuse, where 

the desired set of applications is known up-front. Never-
theless, the medium function granularity allows us to de-
fine coprocessors that will often be generic for the appli-
cation domain and form good candidates for the second 
and third forms of reuse. In case of the targeted run-time 
reuse over applications of the same hardware, our area 
estimates show a significant increase in efficiency over 
monolithic designs. Moreover, the efficiency per applica-
tion of such multi-coprocessor function modules is not 
significantly lower when compared to monolithic designs. 
Furthermore, while the finer grain of the design slightly 
increases latency and power consumption, it does not ad-
versely affect throughput. 

 



2. Related work 

Clearly, choosing a fine function granularity for a co-
processor (e.g. to compute a sum of absolute differences 
in MPEG motion estimation) facilitates reuse. However, 
the overhead of the infrastructure (e.g. to transport and 
synchronize data access) becomes relatively large. There-
fore, fine-grain hardware acceleration is often embedded 
in RISC or VLIW cores in the form of complex function 
units [1]. However, the overall performance increase and 
reduction in power consumption with such compile-time 
scheduled function units is limited. A coarse-grain co-
processor such as an MPEG-2 decoder [10] may incur 
significantly less overhead, but is difficult if not impossi-
ble to reuse over a set of similar applications. 

Balancing coprocessor reuse versus overhead incurred 
in a generic infrastructure demands a thorough under-
standing of the application domain and architecture at 
hand. Oftentimes, application information is only avail-
able as sequential, complex and ill-documented C-code, 
e.g., obtained as reference implementation from a stan-
dardization body. Extracting reusable computation kernels 
eligible for coprocessor implementation requires exten-
sive restructuring of the application. This software devel-
opment trajectory of mapping an application onto a hard-
ware architecture requires a considerable amount of soft-
ware engineering effort and calls for a structured 
approach. 

We adopt Kahn process networks [6][7] as the model 
of computation. Ptolemy [3] provides an integrated 
framework for specification and analysis of, among oth-
ers, applications modeled as Kahn process network. Mod-
eling languages such as SystemC [12] allow a gradual 
transformation from sequential code and Kahn-style mod-
els towards a hardware implementation. However, how to 
do this transformation process remains implicit. 

This paper proposes a structured approach to gradually 
transform application C-code into reusable coprocessors. 
Hereto, the design trajectory in Section 3 focuses on ex-
tracting hardware-implementable computation kernels that 
are common for a set of applications. Section 4 exempli-
fies the transformation process in a case study for time-
shared MPEG-2 decoding and encoding. Finally, Section 
5 outlines the initial results. 

3. Proposed design trajectory 

Figure 1 gives the trajectory that is followed to gradu-
ally transform a set of applications written in a high-level 
programming language (such as C) into behavioral mod-
els of the coprocessor hardware. Oftentimes, particular 
applications are transformed more than once to different 
hardware architectures over time. During this software-
mapping trajectory, the code is restructured significantly 
on behalf of optimization. Optimized code has little or no 

reusability over different hardware platforms. Therefore, 
our software development trajectory is designed to pro-
mote reuse at various levels of optimization. The follow-
ing sections detail the transformation stages indicated in 
Figure 1. 
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Figure 1 Proposed design trajectory. 

3.1. Generic process network stage 

The first step is making parallelism and communica-
tion explicit in the application. The application code is 
transformed into a generic process network of an applica-
tion, written in YAPI [7]. A YAPI application is specified 
in C/C++ as a set of concurrent processes that communi-
cate through buffered communication channels, similar to 
a Kahn Process Network [6]. For communication, each 
process calls read and write primitives on their input and 
output ports that connect to the communication channels. 
With the read primitive, the process consumes data in 
FIFO order from the channel or blocks when no data is 
available. The process produces data into the channel 
through the write primitive. This style of structuring ap-
plications fits well with the streaming and data-dependent 
nature of the targeted media-processing applications. 

The target hardware architecture influences the choice 
of the algorithm and its partitioning into functional enti-
ties. However, a ‘generic’ model of an application is in-
dependent of other applications that may run on the target 
hardware, and has minimal dependency on the target 
hardware architecture. Once the generic model is avail-
able, this becomes the foundation for any further applica-
tion development. This is similar to having ‘reference C-
code’ as a basis for optimizing code towards a program-
mable platform. Moreover, the step of transforming an 
application into generic YAPI provides the insight into 
the structure and behavior of the application that is needed 
for mapping the application onto the architecture at hand. 
The generic YAPI model with its clean structure of paral-



lel tasks and explicit communication can be reused over 
different architecture-definition projects. For instance, the 
MPEG-2 decoder model of Figure 2 has been used as 
starting point in very different settings: design space ex-
ploration of a dedicated MPEG-2 accelerator [13], data-
parallel execution on a multi-DSP architecture [4], and the 
definition of the instruction set of a prototype 64-bit 
TriMedia processor [5]. 

3.2. Architecture-tailored process network stage 

The second transformation step towards a hardware 
implementation contains the rewriting of the generic 
YAPI model into the architecture-tailored process net-
work of the application. Here, the generic YAPI model is 
restructured such that subsequently it can be mapped onto 
the target architecture. Note that when an application is 
later mapped onto other architectures, the generic YAPI is 
again restructured to match the characteristics of the ar-
chitecture at hand.  

A key aspect of the transformation is that several ap-
plications are restructured concurrently to make the ge-
neric computation kernels explicit. These computation 
kernels form the candidates for coprocessor implementa-
tion. This may involve changing the actual application 
algorithms to extract common application kernels, as il-
lustrated in Section 4.2. 

3.3. Coprocessor design stage 

The architecture-tailored model forms the starting 
point for hardware development. To aid the process of 
modeling the target hardware blocks, the YAPI code is 
separated into two parts: a control part with the YAPI 
read and write commands, and a part with bare functions. 
The bare functions provide the functionality of the target 
hardware, stripped from communication-dependent con-
trol aspects. The bare functions (e.g. the computation of a 
DCT) are reused as is in the hardware definition, while 

the control part must be rewritten to match the specific 
communication architecture of the target. 
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Figure 2. Generic MPEG-2 decoder model. 

In our case study, communication channels between 
application processes are mapped onto data streams with 
communication buffers allocated in shared on-chip mem-
ory. The coprocessor designer needs to explicitly decide 
on the granularity of synchronizing access to these buffers 
when rewriting the YAPI read and write primitives into 
the communication primitives offered by the target archi-
tecture [11]. 

The design of coprocessor control includes the design 
of the data streams. For the architecture to be flexible, 
tasks running on the function-specific coprocessors have 
to support being connected into various graphs. The pos-
sibilities for reconnection increase dramatically if all 
streams are based on a uniform syntax that all coproces-
sors understand. A packet formatting of the data streams 
provides a common way to handle (dynamically) variable-
size data chunks. 

We designed the data streams as a stream of variable-
length packets, consisting of a 2-byte header field next to 
a 1 to 255-byte payload. The header field gives the size of 
the payload and indicates the packet type. Using the 
header information, the coprocessor can decide to process 
the packet as basic media data, interpret it as meta-data 
and update the task state, or forward the packet to the sub-
sequent coprocessor in the application pipeline. With such 
a packet formatting, the coprocessor designer may choose 
to interleave packets from different application streams in 
a single stream to reduce buffer-memory requirements and 
synchronization overhead. 

4. MPEG-2 analysis and transformation 

This section presents a case study for the design tra-
jectory of Section 3. The following subsections show the 
transformation steps from generic YAPI models to behav-
ioral coprocessor models for two applications: MPEG-2 
video decoding and encoding. 



4.1. Generic decoder and encoder models 

Figure 2 depicts the generic MPEG-2 decoder YAPI 
model [13], derived from C-software of the UC Berkeley 
MPEG decoder. The creation of this generic YAPI model 
involved an extensive restructuring of the functions and 
data structures in the sequential C-code to make parallel-
ism and dependencies explicit. 

The process Tvld parses an MPEG bitstream under 
control of a process Thdr. The Thdr process distributes 
the retrieved sequence and picture properties to other 
processes. The Tvld process sends motion vectors into a 
functional pipeline (TdecMV, Tpredict) that retrieves the 
prediction data for the reconstruction of macroblocks. The 
coefficient data for the error blocks is sent into a second 
functional pipeline for run-length decoding, inverse scan, 
inverse quantization, and inverse DCT (Tisiq, Tidct). The 
grain size of this coefficient data is a macroblock. A mem-
ory manager process Tmemman controls the access to the 
frame memories. 

Figure 3 depicts the generic MPEG-2 encoder model, 
derived from reference C-code of Philips’ EMPRESS 
encoder [2] The depicted encoder accepts raw picture data 
as input. The difference of the input data with motion 
compensated predication data is sent through a functional 
pipeline of forward DCT, quantization, run-length encod-
ing, and finally variable-length encoding. A second func-
tional pipeline performs inverse quantization, inverse 
DCT, and motion compensation to create the predication 
data for the next input. Both pipelines operate at a mac-
roblock granularity. The memory manager is responsible 
for synchronizing access to the frame memories. 

4.2. Architecture-tailored decoder and encoder 
models 

The choice of coprocessors is influenced by the tar-
geted performance of the MPEG-2 decoding and encoding 
applications. The described function module targets con-
current decoding of two high-definition (HD) MPEG-2 
bitstreams. Moreover, the coprocessors should also be 
capable of simultaneous encoding and decoding standard 
definition (SD) MPEG-2 streams. 

A typical hardware-software codesign problem is the 
trade-off between load on the control processor (CPU) 
and the complexity of coprocessor control as implemented 
in its hardware. The load on the control processor for co-
processors operating on a macroblock or sequence granu-
larity is clearly too large for simultaneous decoding of 
two (worst-case) HD sequences. Therefore, the coproces-
sors are designed to run independently for at least an en-
tire MPEG frame. This decision implies that macroblock 
and slice properties must be provided to the coprocessors 
through regular input streams. Picture and sequence prop-
erties may be provided through separate auxiliary input 
streams, thereby removing the dependency on the Thdr 
process of Figure 2. 
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Figure 3. Generic MPEG-2 encoder model. 

For the DCT, scan, and quantization, both the forward 
and inverse functions can be implemented with exactly 
the same hardware, only requiring different constants and 
quantization tables. For the DCT function to be reusable 
in the decoder as well as in the forward and inverse path 
of the encoder, it needs to be implemented stand-alone. 
However, run-length, scan, and quantization may be com-
bined into a single coprocessor to keep the communica-
tion between these functions local in the coprocessor. 

The MPEG decoder of Figure 2 implements the se-
quence of run-length decoding, inverse scan, and inverse 
quantization. Since run-length encoding is lossless, and 
the silicon area for run-length encoding/decoding is very 
small, run-length encoding in the forward path of Figure 3 
can be done before forking off the inverse path. The en-
coder model needs to be restructured to implement this 
behavior. However, this new structure significantly re-
duces communication buffer requirements of the encoder 
as the stream buffer between the forward and inverse path 
remains in the compressed domain. 

4.3. MPEG coprocessor design 

This section describes the internal architecture of the 
coprocessors for MPEG decoding and encoding. Based on 
the analysis in Section 4.2, we decided upon a 4-
coprocessor model: variable-length decode (VLD), run-
length, scan and quantization (RLSQ), discrete cosine 
transform (DCT), and motion compensation/estimation 
(MC/ME). The RLSQ, DCT, and MC/ME coprocessors 



should be effective for both MPEG-2 decoding and en-
coding. Variable-length encoding (VLE) for MPEG-2 
encoding is to be implemented in software. 

Variable-length decoding (VLD) 
The VLD parses an MPEG-encoded video bitstream. 

From this bitstream it extracts both the basic video data to 
be passed to the RLSQ unit, as well as control information 
contained in macroblock and picture headers, such as 
quantization parameters. All this information is decom-
pressed and sent into the appropriate stream buffers. This 
control information will change some of the internal state 
of the coprocessors later in the pipeline. Sending this in-
formation as packets through the buffered streams is an 
important prerequisite for the concurrent (pipelined) op-
eration of all MPEG coprocessors. 

The application throughput requirement for dual 
stream high-definition decoding requires dedicated hard-
ware to achieve sufficient speed in the innermost loops of 
the decoding process. However, to handle the less fre-
quent (control) data around that, the parsing and decom-
pression can be handled in software. If the hardware for 
the innermost loops is equipped with programmable ta-
bles, then the combination with software processing of the 
outer parts allows for multi-standard decoding, ranging 
from MPEG(-1, -2, -4) to DV. Therefore, we map the 
parsing process Thdr to a small, dedicated RISC core, and 
compression process Tvld to dedicated VLD hardware. 

The interfaces between the RISC core and the VLD 
engine are such that the VLD engine replies on commands 
from the RISC core. Such commands are like: ‘provide 
me with the initial bits currently heading the bitstream’, 
‘advance the bitstream by n bits’, ‘send these provided 
bits into the output stream’, and ‘decode the block-data in 
the bitstream to the output and reply with a ready-code’. 

Run-length, scan, and quantization (RLSQ) 
The RLSQ coprocessor combines run-length decoding 

and encoding, zigzag scanning, and quantization func-
tions. In case of encoding, the input to this coprocessor is 
a DCT coefficient block and output is run-level pairs. For 
decoding, the input is run-level pairs and output is a (pos-
sibly scaled/smaller) coefficient block. 
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Figure 4. RLSQ coprocessor architecture. 

The order of execution of scanning and quantization is 
different for encoding and decoding. However, the same 
implementation can support both encoding and decoding 

since the order of execution does not change the outcome 
of these operations. The run-length encoding (RLE) func-
tion and run-length decoding (RLD) functions are instan-
tiated separately (Figure 4). 

The RLSQ coprocessor operates on the granularity of 
DCT blocks and can switch tasks after producing one 
such DCT block. However, to enable multi-tasking, the 
coprocessor must take care of the internal state of each 
task, formed by the quantization and scanning tables. The 
VLD writes these tables in a stream buffer in the on-chip 
memory. At the start of a new task, the RLSQ coprocessor 
(re)loads the tables from this buffer into its local table 
memory. The previous tables do not need to be saved 
upon a task switch. The separation of data transport and 
synchronization in the communication infrastructure [11] 
allows the tables to remain in the stream buffer until the 
coprocessor explicitly frees the memory space by syn-
chronizing with the VLD. 

Discrete cosine transform (DCT) 
The DCT coprocessor includes inverse and forward 

DCT functions. It operates on the DCT block level and 
does not require any knowledge of the picture properties 
or sequence properties. It supports both scaling and block 
compression. The internal state of this coprocessor is void 
after processing a DCT block. Consequently, the coproc-
essor can switch tasks on a block-level granularity with-
out requiring additional hardware for state save/restore. 

We chose the LLM algorithm [9] to implement both 
forward and inverse DCT functions. The LLM algorithm 
shares the same constants for multiplication in both in-
verse and forward DCT. Therefore, a DCT coprocessor 
can use the same data path for the implementation of in-
verse and forward DCT. 

Motion compensation/estimation (MC/ME) 
To efficiently compress video signals, MPEG exploits 

the temporal correlation between successive pictures. In a 
linear-wise scanning of the pictures from the left to the 
right and top to bottom, successive blocks of 16x16 pixels 
(macroblocks) are predicted from previously decoded 
pictures. Because these HD reference pictures are too 
large for on-chip storage, they are located in off-chip 
SDRAM memory. Consequently, the MC/ME coprocessor 
requires a connection to this off-chip memory to fetch the 
prediction data and to write the reconstructed pictures that 
are used as reference for the decoding of successive pic-
tures (modeled as TpredictRD and Tstore in Figure 2). 

Figure 5 depicts the internal architecture of the 
MC/ME coprocessor. To share the hardware resources for 
prefetching and interpolation, motion estimation and mo-
tion compensation are joined in one coprocessor. The pre-
fetch and write units of Figure 5 embed sufficient buffer-
ing to hide the large access delay of the SoC infrastruc-
ture. The prefetch unit can work ahead of the MC/ME unit 



by processing motion vector data provided by the VLD in 
a separate stream. 

CacheCache BufferBuffer

SoC infrastructure

InterpolationInterpolation
MC 

specific
MC 

specific

Coprocessor communication infrastructure

ME 
specific

ME 
specificPrefetch unit MC/ME unit

BufferBuffer

Write unit

 
Figure 5. MC/ME coprocessor architecture. 

The prefetch unit copies prediction data from the 
cache to its buffer. Although caching of stream-oriented 
data is generally not effective, the use of an SDRAM 
memory introduces some temporal locality due to its in-
herent transfer overhead. This can be exploited to reduce 
some of the scarce memory bandwidth. Our experiments 
show that a relatively small direct-mapped cache of 6 kB 
reduces on average 30% memory bandwidth. 

5. Results 
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Figure 6. Resulting MPEG function module. 

The generic decoder and encoder models have been 
reused in a number of architecture analysis and definition 
projects such as [4], [5], and [13]. To support the design 
trajectory, we developed a SystemC [12] model of the 
architecture that enables mixed-level simulation of YAPI 
tasks, behavioral coprocessor models, and cycle-accurate 
hardware models. This allows verification of functional 
correctness after each transformation step. The behavioral 
models of the described MPEG coprocessors reuse virtu-
ally all source code of the bare functions in the architec-
ture tailored models. Simulation runs show that the co-
processors concurrently execute encoding and decoding 
tasks, reusing coprocessor hardware. The coprocessors of 
Figure 6 have sufficient performance to decode two high-
definition MPEG streams in a time-shared fashion at a 
150 MHz clock frequency with a total estimated coproc-
essor area of 4 mm2 in 0.18 micron CMOS technology. 

6. Conclusion 

This paper presents an application design trajectory to 
transform sequential application C-code into a reusable 
multithreaded application model. The multithreaded 
model is subsequently mapped onto a target architecture 
with maximal source code reuse. The design trajectory 

concurrently addresses a set of applications, to identify 
common compute kernels that qualify for generic coproc-
essor implementations. Thereby, the presented trajectory 
results in the definition of a set of multitasking coproces-
sors that can be applied for various applications within a 
chosen application domain. This is demonstrated in a case 
study to define novel coprocessor hardware that concur-
rently executes decoding and encoding tasks, starting 
from sequential descriptions of an MPEG-2 encoder and 
decoder. It is difficult to automate the design decisions 
involved in the proposed design trajectory. Even so, ongo-
ing work includes the development of tools and standard-
ized APIs to reduce the effort involved in the code trans-
formations. 
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