
Euromicro Conference on Real-Time Systems
Vienna, Austria, 19th—21th June, 2002.

http://www.idt.mdh.se/ecrts02/

Abstract
Eclipse defines a heterogeneous multiprocessor archi-

tecture for high-performance streaming media as a sub-
system of a system-on-silicon platform for the consumer
electronics market. The scalable architecture template
supports multiple function-specific coprocessors that op-
erate in parallel and independently. Each coprocessor is
multi-tasking, allowing multiple applications to proceed
concurrently. Eclipse instances combine application con-
figuration flexibility with the efficiency of function-
specific hardware.

The Eclipse template introduces novel hardware units,
called 'shells', dedicated to each coprocessor. The
combination of limited available buffer memory and high
data-bandwidth causes high task-switch rates and
synchronization rates, necessitating full support by the
shell. Thereto, each shell implements a task scheduler and
a transport synchronization unit. The task scheduler is
designed for a dynamic workload environment with guar-
antees for minimum resource budgets, and achieves on-
line task selection within 10 clock cycles.

1. Introduction

Consumer audio/video appliances become increasingly
open and flexible to accommodate a variety of applica-
tions. These media applications include high-definition
digital television with time shift functionality (e.g. a set-
top box with pause button), 3D games, video conferenc-
ing, or MPEG-4 like interactivity. The required set of ap-
plications and their format varies per product, per country,
and over time as standards evolve.

Managing complexity, design cost, and time-to-market
of such resource-constrained appliances requires a generic
and scalable media processing platform that can be de-
ployed in a wide range of products. Such a platform must
support simultaneous execution of very diverse tasks, such
as high-throughput stream-oriented data processing and
highly data-dependent irregular processing with complex
control flows.

Currently, many vendors enter the market with plat-
forms that address these issues to some extent (e.g. OMAP
[1], PrimeXSys [2]). Philips Electronics has been develop-

ing such a platform concept for many years with instances
such as the Viper system on silicon [3]. Such complex
media processing chips contain sophisticated hardwired
function modules that implement critical parts of the tar-
geted media applications. Up to this point in time, these
function modules could not be reused over different appli-
cations. The same complex media processing chips also
contain multiple programmable cores, so as to endow the
system with a high level of flexibility. However, these
highly reusable programmable cores have a significantly
lower performance and correspondingly higher power
consumption as compared to the non-reusable hardwired
coprocessors.

We developed the Eclipse architecture [4] as a template
for designing flexible yet cost-effective function modules.
Eclipse instances combine application configuration flexi-
bility with the efficiency of function-specific hardwired
modules. Cost-effectiveness is achieved by introducing
high levels of parallelism and multi-tasking, while scal-
ability is achieved by avoiding centralized control in the
system.

Section 2 describes the Eclipse architecture template
and the system level support provided by the Eclipse ‘co-
processor shells’. Section 3 introduces distributed multi-
tasking along with robustness considerations for time-
sharing compute resources with a limited capacity. This
paves the way for the implementation of scheduling
streaming media tasks in Section 4.

2. Eclipse architecture

The model of computation of Eclipse is based on Kahn
Process Networks [5][6], in which media processing ap-
plications are specified as a set of concurrently executing
tasks that exchange information solely by unidirectional
streams of data. A directed graph with a node for each
task and an edge for each data stream represents the struc-
ture of the application. The data streams in the network
are buffered. Each buffer is a FIFO, with precisely one
producer and one or more consumers. Due to this buffer-
ing, the producer and consumers do not need to mutually
synchronize individual read and write actions on the chan-
nel. Reading from a channel with insufficient data avail-

Robust media processing in a flexible and cost-effective network
of multi-tasking coprocessors

Martijn J. Rutten Jos T.J. van Eijndhoven Evert-Jan D. Pol
Philips Research Laboratories Philips Research Laboratories Philips Semiconductors

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
{martijn.rutten, jos.van.eijndhoven, evert-jan.pol}@philips.com

able causes the consuming task to stall. Kahn [5] formally
proved that such a system has a well-defined unique be-
havior. In particular, the functional behavior—observed as
the sequence of data items that traverse the edges—is in-
dependent of the scheduling of the tasks.

Eclipse supports the implementation of medium grain
functions in function specific coprocessors or CPU soft-
ware executing on a media processor (e.g. the TriMedia
VLIW [3]). This allows a trade-off in the architecture for
software flexibility versus the efficiency (power, area) of
function-specific hardware. Functions eligible for coproc-
essor implementation are those commonly encountered in
media applications, such as the discrete cosine transform
(DCT) used by encoders and decoders for e.g. JPEG,
MPEG, and DV. These medium-grain functions are linked
at run-time into a Kahn-style application, using on-chip
communication and data buffering. Fig. 1 indicates such a
mapping of Kahn tasks onto coprocessors and/or CPU
software.

Eclipse coprocessors are dedicated hardware function
units which are only weakly programmable. All coproces-
sors run in parallel and execute their own thread of con-
trol. Exploiting this thread-level parallelism in complex
applications is required to obtain sufficient application
throughput, even in conjunction with instruction-level or
SIMD data-level parallelism inside the coprocessor.

The coprocessors allow multi-tasking, i.e. each coproc-
essor concurrently supports multiple Kahn tasks from a
single Kahn network or from multiple and possibly differ-
ent networks. Time-shared use of the coprocessors does
not rely on run-time control by CPU software.

7DVN
$

7DVN
%

7DVN
&

),)2

,QSXW�SRUW

2XWSXW�SRUW

�FR�SURF�Q�FR�SURF��

&RPPXQLFDWLRQ
	�0HPRU\

$SSOLFDWLRQ

$UFKLWHFWXUH

0DSSLQJ

. . .

Fig. 1. Application to architecture mapping.

In this paper, we discuss the distributed multi-tasking
support to execute multiple Kahn tasks on the Eclipse
coprocessors. Although we focus on the scheduling of
Eclipse coprocessors, the presented concepts are directly
applicable to scheduling Kahn tasks that are mapped on
the media processor.

2.1. Shell services

To effectively separate communication hardware
(buses, memory) and computation hardware (coproces-
sors), Eclipse introduces the coprocessor shell. Fig. 2 de-
picts this interface block between coprocessors and the
communication hardware. The shells have a uniform inter-
face towards the communication hardware, while having a
customized interface towards the coprocessor. The shells
allow reuse of coprocessor designs over different Eclipse
instances with different communication network character-
istics. Moreover, the architecture of the shell itself is de-
signed as a parameterized template to facilitate reuse
within an Eclipse instance. Shell instances with coproces-
sor-specific parameter settings are derived from this ge-
neric template.

&RPPXQLFDWLRQ

*HQHULF�VXSSRUW

&RPSXWDWLRQ&RSURFHVVRU&RSURFHVVRU&38

6KHOO�+: 6KHOO�+:6KHOO�6:
6KHOO�+:

WDVN�OHYHO���LQWHUIDFH

FRPPXQLFDWLRQ����LQWHUIDFH

&RPPXQLFDWLRQ�QHWZRUN

0HPRU\

Fig. 2. Coprocessor shell interfacing computa-
tion and communication.

Basically, the shell offers operating system like ser-
vices to each Eclipse coprocessor. The shell provides the
capability for stream synchronization, data transport, and
task switching through five interface primitives. In all
cases the coprocessor has the initiative for taking action;
all these primitives are called by the coprocessor and im-
plemented by the shell. The five interface primitives are:
• void Read(int port_id, int offset,

 int n_bytes, Bytes *bytevector);
• void Write(int port_id, int offset,

 int n_bytes, const Bytes *bytevector);
for (media) data communication, and
• bool GetSpace(int port_id, int n_bytes);
• void PutSpace(int port_id, int n_bytes);
for data synchronization, and
• int GetTask(…);
for task switching. The following section details the use of
the communication and synchronization primitives, while
the GetTask primitive is presented in Section 4.2.

2.2. Data transport and synchronization

From the coprocessor point of view, a data stream
looks like an infinite tape of data, with a current ‘point of
access’. With the GetSpace call, the coprocessor asks the
shell permission to access a certain data space ahead of
this current point of access. Here, data space signifies

available data for reading from an input data stream, and
available room for writing data to an output stream respec-
tively. If the shell grants permission, the coprocessor can
perform Read or Write actions inside its requested space,
with variable-length data (through the n_bytes argument),
and on random access positions (through the offset ar-
gument). If the shell does not grant permission, the Get-
Space call returns false. After one or more GetSpace
calls—and optionally several Read/Write actions—the
coprocessor can decide it is finished with processing
(some part of) the data space and issue a PutSpace call.
This call advances the point-of-access a certain number of
bytes ahead, in size constrained by the previously granted
space. Fig. 3 depicts this process.

D��,QLWLDO�VLWXDWLRQ�RI�µGDWD�WDSH¶�ZLWK�FXUUHQW�DFFHVV�SRLQW�

E��*HW6SDFH DFWLRQ�SURYLGHV�ZLQGRZ�RQ�UHTXHVWHG�VSDFH�

F��5HDG�:ULWH�DFWLRQV�RQ�FRQWHQWV�

G��3XW6SDFH DFWLRQ�PRYHV�DFFHVV�SRLQW�DKHDG�

QBE\WHV�

RIIVHW

QBE\WHV�

Fig. 3. Synchronization and data I/O through a
single port.

Communicating a stream of data requires a FIFO
buffer, which in our case has a finite and constant size. It
is pre-allocated in shared on-chip memory. The shell ap-
plies a cyclic addressing mechanism for proper FIFO be-
havior in the linear memory address range, using the
n_bytes and offset arguments of the Read/Write calls
in addition to the current access point and the buffer size.
Fig. 4 depicts the fixed size cyclic memory space used as
FIFO.

6SDFH�ILOOHG�ZLWK�GDWD

(PSW\�VSDFH

$ %

*UDQWHG�ZLQGRZ
IRU�SURGXFHU

*UDQWHG�ZLQGRZ
IRU�FRQVXPHU

Fig. 4. Basic stream mapped to a finite FIFO.

The rotation arrow in the center of Fig. 4 depicts the di-
rection in which GetSpace calls confirm the granted win-
dow for Read/Write, which is the same direction in
which PutSpace calls move the access points ahead. The
small arrows denote the current access points of tasks A
and B. In this example is A a producer and hence leaves

proper data behind, whereas B is a consumer and leaves
empty space (i.e. already consumed data) behind. The
shaded region ahead of each access point denotes the ac-
cess window acquired through GetSpace.

Tasks A and B may proceed at different speeds, and/or
may not be serviced for some periods in time while other
tasks execute on the multi-tasking coprocessors. The
shells provide the coprocessors on which A and B run with
information to ensure that the access points of A and B
maintain their respective ordering, or more strictly, that
the granted access windows never overlap. It is the re-
sponsibility of the coprocessors to adhere to the informa-
tion provided by the shell, thereby maintaining overall
functional correctness. For example, the shell may some-
times answer false on GetSpace requests from the co-
processor, due to insufficient available space in the buffer.
The coprocessor should then honor the denied request for
access, and refrain from issuing Read/Write calls on the
requested space.

The Eclipse shells are distributed, such that each shell
can be instantiated close to the coprocessor that it serves.
Each shell locally contains the configuration data for the
streams that are incident with tasks mapped on its coproc-
essor and locally implements all the control logic to prop-
erly handle this data. This means that each shell contains a
local stream table that contains a row of fields for each
stream, or more precisely, for each access point. To han-
dle the setup of Fig. 4, the coprocessor shells of tasks A
and B each contain one such row, holding the following
fields:
• A space field containing a (maybe pessimistic) dis-

tance from its own point of access towards the other
point of access in this buffer.

• A stream ID denoting the remote shell with the task
and port of the other point-of-access in this buffer.

Coprocessor A

Shell

Communication network

space – = n

PutSpace(n)

Coprocessor B

Shell
space + = n

GetSpace(m)

Message: putspace(id, n)

(m d space)?

Fig. 5. Local space values and putspace

messages.

As depicted in Fig. 5, the shell of coprocessor B can
answer a GetSpace request immediately and locally by
comparing the requested size m with the locally stored
space value. Upon a PutSpace call, the local shell of
coprocessor A decrements its space field with the indi-
cated amount n and sends a ‘putspace’ message to the

shell of coprocessor B. This remote shell holds the other
point-of-access and increments its space value there.

If GetSpace returns false, the coprocessor is free to
decide on how to continue. Possibilities are:
• Try a new GetSpace with a smaller n_bytes argu-

ment.
• Wait for a moment and then try again.
• Quit the current task and allow another task on this

coprocessor to proceed.
This allows the decision for task switching to depend upon
the expected arrival time of more data and the amount of
internally accumulated state with associated state saving
cost. For non-programmable dedicated hardware coproc-
essors, this decision is part of their architectural design
process [7].

3. Distributed multi-tasking

The Eclipse architecture supports multi-tasking in each
coprocessor, i.e. several application tasks may be mapped
to a single coprocessor, as shown previously in Fig. 1.
This section defines the architectural concepts that are
essential for the definition of such multi-tasking coproces-
sors.

3.1. Robust resource-sharing

Support for multi-tasking is essential in achieving
flexibility of the architecture towards configuring a range
of applications and reapplying the same hardware coproc-
essors at different places in an application task graph. We
believe that new silicon technologies allow fast and effi-
cient coprocessors that have sufficient computation speed
for timeshared use.

The requirements for Eclipse are derived from the
characteristics of the application domain of high-end me-
dia processing. This implies many applications running
concurrently, each with a high degree of irregularity. In
practice, the ratio of worst-case versus average-case load
can be as high as a factor of 10. Under these circum-
stances, architecting the system for worst case scenarios is
not competitive.

The direct consequence of running more applications
than that the system can handle in worst case situations is
that the system must be able to handle temporary overload
situations in a robust way. Eclipse applications are created
by instantiating appropriate tasks on multi-tasking coproc-
essors. Robustness is implemented by assigning each task
a guaranteed minimum of compute resources, which we
term as a budget contract [8]. The budget is set at some
level between average and worst-case task resource re-
quirements, which means that usually the task has suffi-
cient resources available and sometimes not. The contract
guarantees that each task can use the resources that are

assigned to it by its contract, independent of the possible
excess resource requirements of other tasks. Thus, system
robustness is implemented by endowing the system a sepa-
ration of concerns with respect to resource assignment per
task. This separation of concerns is termed justice.

Usually, temporary overload occurs only for one or few
applications concurrently, while others remain at or below
average. Per task budgets are assigned somewhere be-
tween average and worst case, which means that in the
average case not all hardware resources are used. If, in
spite of the fact that some tasks have excess resource
needs, the total load on the system still falls within the
available resources, then reallocating surplus resources to
tasks in need raises the cost-effectiveness of the system.
Note that this reallocation is done only if the resources
would remain otherwise unused.

3.2. Unit of execution

As shown in Section 2.2, the coprocessor explicitly de-
cides on the time instances during task execution at which
it can switch the running task. This way, the hardware
architecture does not need provisions for saving context at
arbitrary points in time. The coprocessor can continue
processing up to a point where it has little or no state.
These are the moments at which the coprocessor can per-
form a task switch most easily. This setup can be regarded
as non-preemptive scheduling with switch points provided
by the coprocessor. This is often termed ‘cooperative
multi-tasking’; the scheduler cannot interrupt the coproc-
essor but waits for the coprocessor to finish a processing
step and request a new task.

At such moments, the coprocessor asks the shell for
which task it should perform work next. This inquiry is
done through the GetTask primitive, as detailed in Sec-
tion 4.2. The intervals between such inquiries are by defi-
nition denoted as processing steps. Generally, a
processing step involves reading in one or more packets of
data, performing some operations on the acquired data,
and writing out one or more packets of data.

Preventing starvation is a shared responsibility between
the coprocessor and the shell. In order to guarantee non-
starvation, the length of the processing steps of each task
mapped on the coprocessor must be bounded. For in-
stance, as the coprocessor may perform a busy wait on a
GetSpace call, the coprocessor must implement a time-out
period after which the coprocessor performs a state save
and ends the processing step [7].

The target granularity for processing steps within the
Eclipse architecture is in the range of 10—1000 clock
cycles. Typically, the duration of a processing step is data
dependent and can vary within this range. The number of
processing steps needed to complete an application mile-
stone (e.g. an MPEG frame) may also be data dependent.

The shell must manage such data-dependent workload in
such a way that the coprocessor is used cost-effectively.

3.3. Budget assignment

Assignment of task computation budgets is done at sys-
tem level, based on resource requirements and relative
importance of each application with respect to the current
system load [8][9]. Every application undergoes an accep-
tance test to verify that the cumulative application re-
source requirements do not exceed the system capacity.
After acceptance, the system assigns budgets to the appli-
cation. These system-level application budgets are trans-
lated into budgets per task for use in the operating system
defined by each Eclipse shell.

The shell must support a policing strategy to ensure
budget protection, such that a higher authority can imple-
ment justice. This responsibility of the Eclipse shells cor-
respond directly to the US police adage ‘to serve and
protect’. Thereto, task budgets are specified in units of
processing time. Assignment of such task budgets has two
opposing aspects that need to be balanced:
1. In the acceptance test, the system must consider the

additional resource requirements of non-preemptive
task scheduling in the Eclipse shells; whenever a task
depletes its budget, the task overruns this budget by
the remaining duration of its processing step. The
relative overhead of this budget overrun can be mini-
mized by assigning a high budget value in relation to
the (worst-case) duration of a processing step.

2. The absolute budgets of tasks in a coprocessor deter-
mine the running time of these tasks, and therefore the
task switch rate of the coprocessor. In turn, the task
switch rate of the coprocessor relates to the buffer
sizes for all its streams. A lower task switch rate
means a longer sleep time for tasks, leading to larger
buffer requirements and latency.

Eclipse task switch rates are fairly high, in the order of 10-
100 kHz. Task budgets typically range from 1000 up to
10,000 clock cycles (10—100 processing steps). Assign-
ing budget values that are relatively high with respect to
processing step duration makes the system behave more
like a preemptive scheduled system.

4. Task scheduling for streaming media

Clearly, multi-tasking implies the need for a task
scheduler that decides which task any coprocessor must
execute at which points in time to obtain proper applica-
tion progress. As Eclipse is targeted at irregular data-
dependent stream processing and dynamic workloads, the
scheduler must be effective for applications with dynamic
workload such as to optimally load the Eclipse coproces-
sors. Therefore, task scheduling cannot be done off-line

but must be performed on-line. This section describes the
distributed implementation of task scheduling and shows
how it handles the robustness requirements of the previous
sections and the data-dependency of streaming media
tasks.

4.1. Distributed task scheduling in hardware

The Eclipse architecture allows any set of coprocessors
to be included in some targeted instance. More specifi-
cally, the number of coprocessors and their associated
shells may vary over instances. Therefore, Eclipse must be
a scalable template. One significant aspect of such a tem-
plate is whether scheduling is organized in a centralized or
distributed fashion. Centralized scheduling is expected to
become a bottleneck in terms of scheduling performance
and wiring for larger instances of the architecture. There-
fore, Eclipse employs distributed task schedulers.

The Eclipse architecture supports relatively high per-
formance, high data throughput applications (GBytes per
second). Due to the limited size for on-chip memory con-
taining the stream FIFO buffers, high data synchronization
and task switch rates are required. As task switch rates are
too high for on-line scheduling in software, Eclipse im-
plements task scheduling in dedicated hardware. Each
coprocessor shell incorporates its own task scheduler.

The scheduling algorithm must be sufficiently simple to
allow a cost-effective hardware implementation in each
shell. On the other hand, the scheduler algorithm needs to
be flexible enough to fit the needs of different coproces-
sors and applications within the generic shell template.
Autonomy of the coprocessors contributes to both scal-
ability and cost-effectiveness. Therefore, the task sched-
uler in each shell runs independent of task schedulers in
other shells.

4.2. GetTask primitive

The task scheduler implements the GetTask function-
ality. The coprocessor calls GetTask before each process-
ing step. The actual function prototype as shown in
Section 2.1 has several arguments for signaling of errors
and application progress, however these extra arguments
do not interact with the task scheduler, and are beyond the
scope of this paper. The return value is a task ID, a small
nonnegative number that identifies the task context. Thus,
upon request of the coprocessor, the scheduler provides
the next best suitable task to the coprocessor.

4.3. Budget-based round-robin

The task scheduler is based on round-robin style task
selection as this can be efficiently implemented in hard-
ware. The scheduler uses a weighted round-robin scheme,

where the weights or budgets are configured as a guaran-
teed minimum number of cycles that a task may continu-
ously execute, irrespective of the resource requirements of
other tasks. The scheduler uses time slices as the unit of
measurement, i.e. a predetermined fixed number of cycles,
typically in the order of the length of a processing step.
The task budget is expressed as a number of time slices.

The tasks that are mapped onto the coprocessor are
configured in the task table in the shell, which contains
among others the resource budget per task. Fig. 6 depicts
the task selection mechanism, executed on each GetTask
request from the coprocessor as a two-stage selection
process:
1. Active task. The active task may continue if there is

some work to do for the active task, i.e. the task is
‘runnable’, and if it still has sufficient budget.

2. Next task. If the active task cannot continue, the
scheduler selects the next runnable task from the list
of tasks that are mapped onto the coprocessor.

5XQQLQJ%XGJHW �%XGJHW>7DVN,G@
UHWXUQ 7DVN,G

5XQQLQJ%XGJHW !��
		�5XQQDEOH>7DVN,G@�"

UHWXUQ 7DVN,G

*HW7DVN

5XQQLQJ%XGJHW ± ±

&ORFN�(YHQW

< 1

7DVN,G ���PRG 1U7DVNV

5XQQDEOH>7DVN,G@"
1

<

Fig. 6. Task scheduling algorithm.

When the task scheduler selects a new task, it assigns
the configured budget from the task table entry of the se-
lected task to a ‘running budget’ field. The running budget
holds the remaining budget of the active task and is dec-
remented by the scheduler after every time slice of task
execution. This way, the budget is independent of the
length of a processing step, and the scheduler restricts the
active task to the number of time slices given by its
budget.

The running budget is discarded when coprocessor de-
cides to terminate the active task when it blocks on com-
munication, i.e. a denied GetSpace request. The next task
starts immediately when the terminated task returns to the
scheduler. This way, tasks with sufficient workload can
use the excess computation time by spending their budget
more often. Shifting the time window of other tasks to an
earlier point in time when a task blocks and discards its
budget allows a maximal utilization of the coprocessor,
while maintaining the budget contracts in case some task
requires more resources than assigned by its budget.

4.4. Dynamic workload and task runnability

Eclipse streaming media tasks have a dynamic work-
load. They can be data dependent in execution time,
stream selection, and/or packet size. This data dependency
influences the design of the scheduler, as it cannot deter-
mine in advance whether a task can make progress or not.
We propose a scheduler that performs a ‘best guess’. This
type of scheduler can be effective by selecting the right
task in the majority of the cases, and recover with limited
penalty otherwise. The aim of the scheduler is to improve
the utilization of coprocessors, and schedule such that
tasks can make as much progress as possible. Due to the
data dependent operation of the tasks, it cannot guarantee
that a selected task can complete a processing step.

Data dependent packet size
Task runnability is based on the available workload for the
task. All streams associated with a task should have suffi-
cient input data or output room to allow the completion of
at least one processing step. The shell, including the task
scheduler, does not interpret the media data and has no
notion of data packets. Data packet sizes may vary per
task and packet size can be data dependent. Therefore, the
scheduler does not have sufficient information to guaran-
tee success on GetSpace actions since it has no notion of
how much space the task is going to request on which
stream.

The scheduler issues a ‘best guess’ by selecting tasks
with at least some available workload for all associated
streams, regardless of how much space is available or re-
quired for task execution, i.e. Space > 0, with the Space
parameter holding the available data or room in the
stream, updated at run-time via the PutSpace primitive.
Checking if there is some data or room available in the
buffer—regardless of the amount—suffices for the com-
pletion of a single processing step in the cases that:
• The consuming task synchronizes at an equal or lower

grain size than the producing task. Therefore, if data
is available, this is at least the amount of data that is
necessary for the execution of one processing step.

• The consuming and producing tasks work on the same
logical unit of operation, i.e. the same granularity of
processing steps. For instance, if there is some but in-
sufficient data in the buffer, this indicates that the
producing task is currently active and that the missing
data will arrive fast enough to allow the consuming
task to wait instead of performing a task switch.

In current practice, including the MPEG-2 decoding and
encoding applications, all coprocessor communication is
covered by the above two cases.

Data dependent stream selection
A task is runnable if there is at least some available space
in all streams of the task. The selection of input or output
streams however can depend on the data being processed.
This means that even if Space = 0 for some of the streams
associated with a task, the task may still be runnable if it
does not access these streams in the upcoming processing
step. In the task runnability test, the scheduler simply does
not check the space value for streams for which it is un-
clear whether or not the task is going to access the data.

Blocking on communication
To assess task runnability, each stream is associated with a
‘runnable’ flag. Apart from the non-deterministic streams
of the previous paragraph, this flag is set if the stream has
sufficient available workload (Space > 0). Task runnabil-
ity now simply resorts to the AND operation over the run-
nable flags of the streams associated with the task.

The runnable flags also help the task scheduler to select
tasks that can progress in the case that coprocessor stream
I/O selection or packet size is data dependent and cannot
be predicted by the scheduler. If a task cannot make pro-
gress due to insufficient space, the GetSpace inquiry on
one of its streams must have returned false. In this case,
the stream is ‘blocked’, and the shell sets the runnable flag
to false, thereby making sure this task is not selected in
a next scheduling round until this stream again has suffi-
cient data. Note that after a failing GetSpace request, the
active task can also issue a second GetSpace inquiry for
a smaller number of bytes, and thereby set the runnable
flag true.

Thus, on a GetSpace inquiry, the shell sets the run-
nable flag of the indicated stream to the return value of the
GetSpace call. Additionally, the shell sets the runnable
flag true when an external ‘putspace’ increases the space
for the blocked stream. This runnable flag therefore im-
proves the scheduling accuracy, in the sense that it avoids
repeated activation of a blocked task.

5. Results

The Eclipse architecture template is implemented in a
retargetable cycle-accurate simulator. This includes simu-
lation models of a set of four multi-tasking coprocessors
for MPEG-2 decoding in a first instance of the Eclipse
template. These can be configured at run-time to decode
maximally two high-definition MPEG-2 streams
(1920x1080 pixels interlaced), or up to six standard defi-
nition MPEG-2 streams (720x576 pixels interlaced) in a
time-shared fashion. Initial simulation results, as well as
estimated performance, silicon area, and power consump-
tion, are presented in [4]. Currently, detailed analysis and
design of this first Eclipse instance is in progress.

6. Related work

Existing heterogeneous architectures for streaming me-
dia with multi-tasking processors either operate on a
course function grain with communication through large
buffers on off-chip memory [3][10], or focus toward fine
grain processing elements with very regular workload and
an extensive on-chip communication network [11][12]. In
the latter architectures, a central CPU takes care of sched-
uling the tasks on all processing elements. Catering to the
requirements on high-performance, scalability, and the
irregular behavior of streaming media, Eclipse introduces
distributed multi-tasking in dedicated hardware support.
Eclipse complements the existing palette of function mod-
ules, consisting of programmable cores and hardwired
coprocessors, as these may be combined in a single
course-grain system. For example, such a combination
may consist of an Eclipse subsystem for flexible media
processing and a statically scheduled subsystem for regu-
lar video display processing. In order to address the highly
challenging requirements of flexibility and cost-
effectiveness, the Eclipse designers deployed a number of
known concepts in an entirely new setting.

Budget contracts are described by Bril et al [8], similar
to the processor capacity reservation mechanism of Mer-
cer, Savage, and Tokuda [9]. The ‘firewall’ concept for
rate-controlled scheduling of Yau and Lam [13] resembles
our concept of justice. Moreover, the reservation system
as described by Mercer et al. [9] forms the foundation for
the implementation of justice at system level.

Weighted round-robin scheduling techniques are well
known in network routing [14]. Shreedhar and Varghese
[15] describe in detail a similar round robin scheduling
scheme for packet queues in network routing, while keep-
ing track of budgets for each queue. However, their style
of saving surplus budgets does not fit our requirements on
real-time behavior. Furthermore, we present several novel
optimizations to the basic algorithms that are specific for
the media processing domain.

The context in which the mentioned known concepts
are applied contains new elements not previously de-
scribed in literature. This context is characterized by our
solution of non-preemptive distributed scheduling of me-
dium-grain tasks with dynamic behavior.

Eclipse instances can be managed by the quality of ser-
vice resource management framework of Bril et al [8].
Such a resource-management framework can control
Eclipse scheduling by configuring the low-level budgets
as used in the task scheduler in the shell.

7. Conclusion

Eclipse offers a cost-effective and scalable solution for
re-using computation hardware over a set of media appli-
cations that combine real-time and dynamic behavior.
These characteristics are achieved by a novel approach
which combines distributed multi-tasking and distributed
synchronization.

The task scheduler in each shell observes available
workload and recognizes data dependent behavior, while
guaranteeing each task a minimum computation budget
and a maximum sleep time. High task switch rates are
supported with a hardware implementation of the shells.

8. Further research

Eclipse multi-tasking is distributed. The tasks of each
coprocessor are scheduled independently by their respec-
tive shells. This means that the Eclipse coprocessors are
loosely coupled, implying that within the time-scale that
the buffer can bridge, scheduling of tasks on one coproc-
essor is independent of the instantaneous scheduling of
tasks on other coprocessors. However, on a time scale
larger than the buffer can bridge, the scheduling of tasks
on different coprocessors is coupled due to synchroniza-
tion on data streams in shared buffers. Utilizing distrib-
uted, unsynchronized scheduling shifts the problem of
controlling overall system behavior to the system level.
The precise effects of multiple, unsynchronized schedulers
on the overall system behavior—especially in relation to
FIFO sizes—is subject of further investigation. As we
expect that many concepts as developed within the real-
time community are applicable in this setting, we are open
to proposals for collaboration in this field.

9. Acknowledgment

We are indebted to Sjir van Loo and Liesbeth Steffens
for their contribution to the Eclipse scheduling concepts as
presented in this paper. We thank Lui Sha for coining the
term ‘justice’ and triggering the discussion on budget po-
licing in Eclipse.

10. References

[1] Texas Instruments, OMAP™ Platform: Overview,
http://www.ti.com/sc/omap

[2] ARM, PrimeXsys™ Platforms, Extendible Platform Archi-
tecture, http://www.arm.com/armtech/PrimeXsys

[3] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A Multi-
processor SOC for Advanced Set-Top Box and Digital TV
Systems”, IEEE Design and Test of Computers, pp. 21-31,
Sept.-Oct. 2001.

[4] M.J. Rutten, et al., “Eclipse: A Heterogeneous Multiproc-
essor Architecture for Flexible Media Processing”, IEEE
Design and Test of Computers: Embedded Processor
Based Designs, 2002.

[5] G. Kahn, The Semantics of a Simple Language for Parallel
Programming, proc. of the IFIP congress 74, August 5-10,
Stockholm, Sweden, North-Holland publ. Co., pp. 471-
475, 1974.

[6] G. Kahn and D.B. MacQueen, Coroutines and Networks of
Parallel Programming, Information Processing 77, B.
Gilchhrist (Ed.), North Holland publ., pp. 993-998, 1977.

[7] M.J. Rutten, J.T.J. van Eijndhoven, and E.J.D. Pol, “Design
of Multi-Tasking Coprocessor Control for Eclipse”, 10th
Int. Symp. on Hardware/Software Codesign (CODES),
May 2002, Estes Park, CO, USA.

[8] R.J. Bril, et al, “Multimedia QoS in consumer terminals”,
IEEE Workshop on Signal Processing System (SIPS), pp.
332-344, Sept. 2001, Antwerp, Belgium.

[9] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capa-
bility Reserves: Operating System Support for Multimedia
Applications”, Int. Conf. on Multimedia Computing and
Systems (ICMCS), pp. 90-99, May 1994.

[10] W. Lee and C. Bosaglu, “MPEG-2 Decoder Implementa-
tion on MAP-CA Mediaprocessor using the C Language”,
SPIE Proc. on Media Processors 2000, vol. 3970, 2000.

[11] V.M. Bove, Jr. and J.A. Watlington, “Cheops: A recon-
figurable Data-flow System for Video Processing”, IEEE
trans. On Circuits and Systems for Video Technology, vol.
5, no. 2, pp. 140-149, April 1995.

[12] E.G.T. Jaspers and P.H.N. de With, “Architecture of Em-
bedded Video Processing in a Multimedia Chip-set”, IEEE
Int. Conf. on Image Processing (ICIP), vol. 2, pp. 787-791,
Oct. 1999, Kobe, Japan.

[13] D.K.Y. Yau and S.S. Lam, “Adaptive Rate-Controlled
Scheduling for Multimedia Applications”, ACM Multime-
dia 96, pp. 129-140, Nov. 1996.

[14] M. Katevanis., S. Sidiropoulos, and C. Courcoubetis,
“Weighted Round Robin Cell Multiplexing in a General
Purpose ATM Switch Chip”, IEEE Journal on Selected Ar-
eas in Communication, vol. 9, no. 8, pp. 1265-1279, 1991.

[15] M. Shreedhar and G. Varghese, "Efficient Fair Queueing
using Deficit Round Robin", SIGCOMM 95, pp. 231-242,
and ACM/IEEE Trans Networking, vol. 4, no.3, pp. 375-
385, Oct. 1995.

	Introduction
	Eclipse architecture
	Shell services
	Data transport and synchronization

	Distributed multi-tasking
	Robust resource-sharing
	Unit of execution
	Budget assignment

	Task scheduling for streaming media
	Distributed task scheduling in hardware
	GetTask primitive
	Budget-based round-robin
	Dynamic workload and task runnability
	Data dependent packet size
	Data dependent stream selection
	Blocking on communication

	Results
	Related work
	Conclusion
	Further research
	Acknowledgment
	References

