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Abstract 

VLIW processors are statically scheduled processors 
and their performance depends on the quality of schedules 
generated by the compiler’s scheduler. We propose a new 
scheduling scheme where the application is first divided 
into decision trees and then further split into traces. 
Traces are speculatively scheduled on the processor 
based on their probability of execution. We have 
developed a tool “ SpliTree”  to generate traces 
automatically. Using dynamic branch prediction for 
scheduling traces our scheme achieves approximately 
1.4x performance improvement over that using decision 
trees for Spec92 benchmarks simulated on TriMediatm. 
 
1. Introduction 
 

“ Very Long Instruction Word Processor” , widely 
known as “ VLIW”  is a paradigm for simple hardware and 
high compute capacity. In a VLIW processor the micro-
architectural details are exposed to the compiler and latter 
generates schedules to exploit maximum Instruction Level 
Parallelism (ILP) present in the code. Two main methods 
of scheduling in VLIW processors are: basic block 
scheduling and extended basic block scheduling. Basic 
block scheduling is limited in its scope of exploiting ILP 
because of small size of basic blocks. (4-5 interdependent 
operations on an average in each basic block.) In extended 
basic block scheduling, groups of basic block scheduling 
can be categorized into following: trace scheduling, 
superblock scheduling, hyperblock scheduling and 
decision tree scheduling. All these scheduling schemes 

suffer from the drawback of issue slot wastage as 
explained later in the text of the paper. 

In this paper we propose a new scheduling scheme 
which ensures minimal issue slot wastage. In our scheme, 
the application is first divided into decision trees and then 
further split into traces by the tool SpliTree developed by 
us. Traces of the application are carved out with the help 
of profile information of the application. Based on profile 
information, each trace is annotated with the probability 
of its execution. All the decision points are removed from 
the body of the trace and extra code is inserted at the tail 
to check for correct conditions. Removal of decision 
points from the body of the trace assists the compiler to 
perform optimizations, which are not possible otherwise. 
Using dynamic branch prediction for predicting root of 
each trace our scheme achieves a gain in schedule length 
of the trace. The proposed speculative trace scheduling 
scheme minimizes the number of mispredictions by 
scheduling traces based on their probability of execution. 

The rest of the paper is organized as follows: section 2 
gives an overview of the scheduling techniques for VLIW 
processors. In section 3 we explain our speculative trace 
scheduling scheme and give results. We summarize 
contribution of the work in section 4 and draw 
conclusions. 
 
2. Related Work 
 

Scheduling is the process of generating a sequence of 
micro-operations that provide appropriate control to the 
functional units for their execution. As mentioned earlier, 
two methods of scheduling are: Basic block scheduling 
and Extended basic block scheduling. Some of the 



 

Figure 1. Types of Extended Basic Block Scheduling Scopes: (a) Trace, (b) Superblock, (c) Hyperblock, 
(d) Decision Tree and (e) Traces of Speculative Trace Scheduling 

extended basic block scheduling techniques are trace 
scheduling, superblock scheduling, hyperblock scheduling 
and decision tree scheduling. The scheduling scopes used 
in these scheduling schemes are illustrated in figure 1.  
 In trace scheduling [3], compiler picks the most likely 
path of execution and schedules it for execution. Using a 
trace, it is possible to expose available ILP because 
several basic blocks are included in it, which can be 
scheduled in parallel on the underlying VLIW processor 
as a single unit. Side entries as well as side exits are 
allowed in traces because of which book-keeping of 
operations moved across basic blocks is required. In 
superblock scheduling overhead of book-keeping is 
obviated as elaborated below. 
 Superblock scheduling [8] is similar to trace 
scheduling except that it does not allow any side entries. 
Traces are formed along with tail duplication past fork 
points. There is only a single entry point as opposed to 
trace scheduling which has multiple entry points. This 
scheduling scheme does not permit code motion past fork 
points, which renders book-keeping unnecessary and is an 
advantage over trace scheduling. A drawback of 
superblock and trace scheduling is that both the 
scheduling schemes execute only one path of the 
application. Selection of wrong path for execution based 
on profile information leads to wastage of processor 
cycles.  
 Hyperblock scheduling [7] is different from trace and 
superblock scheduling in that multiple paths are scheduled 
in a single unit. Hyperblock scheduling uses predication to 
form scheduling scopes. Predication involves conditional 
execution of instructions based on the value of boolean 
operand which is known as predicate. As shown in figure 
1, a hyperblock can contain multiple paths combined 
together by if-conversion and tail duplication. Basic 
blocks containing procedure calls and unresolvable 
memory accesses are not included in a hyperblock. It is a 
single entry structure with multiple side exits. The process 
of if-conversion transforms the control dependency to data 

dependency and hence optimizations can be performed on 
the hyperblock which are not possible with trace 
scheduling. 

Decision tree scheduling [5] is another method of 
extended basic block scheduling and is similar to 
superblock scheduling due to the absence of join points 
and side entries. Each leaf of a decision tree ends in a 
procedure call or jump to a different tree. There are no 
side exits from the interior basic blocks of a decision tree 
and there is only one entry point, which is the root of the 
decision tree. Predication can be employed in decision 
trees similar to hyperblock scheduling, to perform 
compiler optimizations and hence exploit more ILP.  

Control operations in all the scheduling scopes 
discussed above are either predicated or delayed. In the 
case of delayed branch operations, scheduler has to find 
appropriate operations to fill the delay slots of the 
branches. If it is unable to find these operations, it fills 
them with “ nops” . Issue slots thus get wasted which 
otherwise could be used to schedule operations on the 
functional units. Due to the presence of control operations 
in a decision tree, required code optimizations cannot be 
performed because operations following a branch cannot 
be scheduled earlier than the branch. This can be evaded 
by using guarded or predicated execution in which control 
dependency is converted into data dependency with the 
help of predicates and the operations are scheduled as 
soon as their data dependency is met. Value of the 
predicate registers determines whether the result would be 
considered or discarded. Though efficient schedules can 
be generated with higher code density, effectively this 
leads to wastage of issue slots of VLIW processors. These 
issue slots could instead be used to issue operations along 
the correct path. We propose speculative trace scheduling 
scheme as an alternative in which there is minimal issue 
slot wastage and efficient schedules are generated with 
high code density. The scheduling unit in our scheme is a 
single entry and single exit structure which we call 
“ probable execution trace” . Henceforth, whenever we use  



Figure 2. (a) A Decision Tree (b) Traces of the Decision Tree

the term “ trace”  we implicitly mean “ probable execution 
trace” . 
 
3. Speculative Trace Scheduling 
 

In this scheduling scheme, the application code is 
divided into a number of traces i.e. probable execution 
traces of the application are formed. Decision points are 
removed from the body of the trace and extra code is 
inserted at the tail to check for correct conditions. 
Removal of decision points from the body of the trace 
assists the compiler to generate efficient schedules. There 
are two phases in this scheduling scheme. In the first 
phase of the compilation process the application is divided 
into decision trees. After this phase an intermediate file is 
obtained which is a tree file and it contains the application 
code divided into several decision trees. In the second 
phase of the compilation process, the tree file is 
transformed into a trace file i.e. each decision tree in the 
tree file is split into its corresponding traces. These trace 
files are then scheduled on the underlying VLIW 
processor using list scheduling [2]. Decision trees are split 
into traces in the manner shown in figure 2. Path ABCF 
forms one trace as shown in the figure 2. Similarly all the 
possible paths in the decision tree are split into 
corresponding traces. The operations in a trace do not face 
ordering constraints during scheduling because of the 
removal of decision points from the body of the trace. 
Operations are scheduled as soon as their data dependency 
is met. During the formation of the traces, each trace is 
annotated with the probability of execution of the path 
included in it. Since we factor in the branch direction as 
predicted by the branch predictor [1] no delay slots are 
allocated for branches. Gain in schedule lengths is 
achieved and code density is increased in the schedules 
generated by this scheme. As the check for correct 
execution of trace is done at the end of the trace, penalty 
paid on a trace misprediction is the length of the trace. 
The processor has to roll back to the previous checkpoint 
sate in the event of a misprediction with the help of 
additional hardware support [4]. A set of shadow registers 
can be maintained along with the working set of registers 
in the hardware. The state of the processor at the end of 
previously executed correct trace is stored in the shadow 

registers. In the case of a correct prediction, working 
registers are committed into the shadow registers and 
execution of the new trace proceeds. On a misprediction 
working registers are discarded and the state of the 
processor is retrieved from the shadow registers and 
execution of the next trace starts. Memory writes of the 
current trace can be labeled pending till the check for the 
correct trace is made. If the executed trace turns out to be 
correct, pending memory operations are marked 
committed. On a misprediction these pending memory 
writes are discarded. 

 Figure 3. Pseudo Code for the Decision Tree 
shown in figure 4 

 
3.1. Exploiting ILP 
 

Schedules generated by our scheme have higher code 
density as compared to the schedules generated using 
decision trees. We explain this with the help of an 
example. Figure 4(a) corresponds to the decision tree 
generated by the compiler for the “ for loop”  in the pseudo 
code shown in figure 3. Figure 4(b) gives the 
corresponding scheduled code. Number in the parenthesis 
of “ if”  condition (figure 4(a)) shows the probability with 
which that condition is taken. As seen in figure 4(b), 
scheduler has scheduled the whole tree by using 
predicated execution. All the operations are “ if guarded” . 
Register r1 is hardwired register of TriMedia with value 1. 
Register r7 is the masking register whose least significant 
bit (LSB) determines whether the corresponding results 
would be taken into consideration or discarded. If the 
value of LSB of r7 is 1 then the results are taken into 
account and if it is 0 then the results are masked and the 
execution proceeds. Total number of processor cycles to 
execute this schedule is 6. As evident from the figure, last 
3 cycles do not issue any operation but “ nops”  have to be 
included because of the branch operations, which have a 



Figure 4. (a) Decision Tree as generated by the TriMedia compiler. (b) Schedule of the Decision Tree in 
(a) generated by the TriMedia Scheduler

Figure 5. (a) Trace of the most probable path of the decision tree shown in figure 4(a) generated by 
SpliTree. (b) Schedule of the trace shown in (a) generated by the TriMedia scheduler using branch 
prediciton

delay of 3 cycles. 4 issue slots are seen wasted in cycle 2 
of the schedule, which have register r7 as their predicate 
register. Figure 5(a) shows the trace of the most probable 
path of the tree shown in figure 4(a). Head of trace 
contains overall probability of the trace and does not have 
control operations in the body. Scheduled code of the 

trace in figure 5(a) is shown in figure 5(b). If branch 
prediction is accurate then the trace takes only 3 cycles to 
execute the same part of the code as opposed to 6 cycles 
taken by the corresponding tree. On a trace misprediction, 
roll back operations are performed and the penalty paid is 
the length of trace, which in this example is 3 cycles. In 



the schedule of figure 5(b) there are no issue slots wasted 
in scheduling the second path of the decision tree (shown 
in figure 4(a)). As is apparent from the figures schedule 
length has shrunk by 3 cycles by using speculative trace 
scheduling. 

Figure 6. Scheduling Space of Decision Trees 
and Probable Execution Traces 

3.2. Simulation and Results 
 

Simulation environment used for the project is Philips 
TriMedia SDE version 2.0, which is a Philips proprietary 
software tool. TriMedia compiler “ tmcc”  breaks down the 
code into several decision trees depending on the 
application and generates tree files in the intermediate 
format, known as “ trees code”  in the terminology of 
TriMedia. These tree-files are converted into trace-files 
with the help of our tool SpliTree. SpliTree takes as input 
these tree-files and generates trace-files with all the trees 
split into their corresponding traces. While generating 
these traces SpliTree calculates the overall probability of 
execution of the trace based on the profile information (if 
available) obtained from the previous runs of the 
application. (For our simulation purposes we have used 
Philips proprietary input data to gather profile 
information.) Each trace is annotated with this probability. 
The trace label is in accordance with the label of the last 
basic block included in it. These traces are then scheduled 
on the underlying hardware units with the help of 
TriMedia scheduler “ tmsched” . “ tmsched”  at the time of 
scheduling, consults machine description file to generate 
proper schedules. Since a trace is devoid of control 
operations in its body, there is no overhead of idle 
processor cycles as illustrated in figure 5. Figure 4(a) 
shows the tree code generated by the tmcc whose schedule 
is given in figure 4(b). Most probable trace of the same 
tree is shown in figure 5(a) with its schedule in figure 
5(b). Number of branch delay slots is 0 cycles in our 
schedule because dynamic branch prediction is employed 
to predict branch at the end of the trace when the trace is 
executed.  

In order to bring out the efficacy of the speculative 
trace scheduling scheme proposed in this paper, we cover 
the scheduling space of both decision trees and probable 
execution traces, with and without branch prediction. This 
is pictorially depicted in figure 6. The expression for the 
execution time of the application, “ ETtree”  in Case 0 is 
given by:  
  

where, “ Ltree”  is the schedule length of a tree and can be 
expressed by Ltree = 

�
path=1 Lpath *ppath. “ Lpath”  is the 

length of each path of a decision tree and “ ppath”  is the 
probability of execution of the path. The expression for 
the execution time “ ETptree”  in Case 1 is given by: 
 
 
where, “ MPtree”  is the effective penalty for a mispredicted 
tree. The expression for calculating “ MPtree”  is: MPtree = 
R * MispredictionPenalty, where “ R”  is the next PC 
misprediction rate of the branch predictor and 
misprediction penalty for each tree is equal to the number 
of pipeline stages between the fetch and the execute unit. 
Execution time, “ ETtrace”  of the application in Case 2 is 
given by:  
 
 
where, “ Ltrace”  is the schedule length of the trace, “ Etrace”  
is the execution count of trace and “ ptrace”  is the 
probability of the execution of the trace. Execution time, 
“ ETptrace”  of the application in Case 3 is evaluated as:  
 
 
 
where, “ MPtrace”  is the effective misprediction penalty of 
the trace and can be expressed as MPtrace = R *  
MispredictionPenalty. “ R”  is the next PC misprediction 
rate of the branch predictor and the misprediction penalty 
is equal to the length of the trace.  
 The results for Cases 1, 2 and 3 are normalized with 
respect to that of Case 0 and are reported in Table 1. As 
already mentioned in earlier sections, sufficient hardware 
[4](which is not present in TriMedia) is assumed to nullify 
the execution of wrongly predicted traces. The branch 
predictor for the VLIW processors used in this work is the 
one proposed by Jan Hoogerbrugge in [1]. We have used 
the results of branch prediction from the paper of Jan [1], 
where the branch predictor predicts the direction of the 
branch along with the issue-slot that contains the taken 
branch. The rate of branch misprediction depends on the 
implementation of the branch predictor as well as on the 
application. If a lot of branch operations are present in an 
application and the behavior of branches change 
frequently then the rate of branch misprediction is high for 
such an application. Results have been provided for 
Spec92 benchmarks. We used Spec92 benchmarks to 
evaluate our results because these are adequate to quantify 
the results for embedded processors. As can be seen in 
Table 1, a gain in performance is achieved in all the three 
cases as compared to decision trees with delayed branches 
of TriMedia. Jan Hoogerbrugge has reported Case 1 
results in [1] and we have reproduced them in this paper 
for the sake of comparison with our speculative 
tracescheduling scheme. Performance gain in the case of 
 

ETtree = � Etree *  Ltree                                            (1)
trees 

ETptree = � Etree *  (Ltree + MPtree)                         (2) 
trees 

ETtrace = � Etrace *  Ltrace *   ptrace                           (3) 
traces 

ETptrace = � Etrace *  ptrace *  (Ltrace + MPtrace)         (4)
traces 

n 



Benchmark 
Predicted Trees 
(Case 1) 

Unpredicted Traces 
(Case 2) 

Predicted Traces 
(Case 3) 

008.espresso 1.1688 1.2336 1.5387 
022.li 1.2266 1.0825 1.3631 
023.eqntott 1.1652 1.1348 1.4009 
072.sc 1.0913 1.1111 1.3677 
Average 1.1629 1.1405 1.4170 

Table 1. Performance Improvement relative to delayed branches in TriMedia for three cases: predicted 
branches in trees (branch delay is 0 cycles), split traces (no branch prediction i.e. branch delay is 3 
cycles) and branch prediction in traces (branch delay is 0 cycles).

branch prediction is obvious considering the fact that 
branch delay slots are reduced to zero. Gain in 
performance is also achieved by splitting trees into traces 
without using branch prediction (branch delay slot = 3 
cycles) as is evident from column 2 results in Table 1. 
This is due to the removal of control operations from the 
body of the trace because of which the operations are 
moved higher up in the schedule and issue slots are 
utilized more effectively. Column 2 results give the 
theoretical gain of trace scheduling over decision tree 
scheduling and have been produced here to show 
theoretical comparison of trace scheduling with decision 
tree scheduling. Decision trees with branch prediction 
perform better than unpredicted traces because of the 
absence of branch delay slots in the former. A significant 
gain is seen in the case of predicted traces (column 3 of 
Table 1) as compared to predicted trees (column 1) and 
traces without branch prediction (column 2). This is due to 
two reasons: 1) branch delay slot reduction and 2) the 
removal of decision points from the body of the trace 
because of which ordering constraints are absent in the 
schedules. The performance achieved by our scheduling 
scheme is approximately 1.41 times the original TriMedia 
scheduling scheme, which is based on decision tree 
scheduling. The performance of predicted traces is 
approximately 1.2 times the performance of predicted 
trees (column 1 and 3 of Table 1).  
 There is code growth due to replication of code for 
forming traces. However, the performance gain is 
considerable to offset the disadvantage of code expansion. 
For long traces, the misprediction penalty will be high. 
Although intermediate checkpoints will be beneficial for 
such cases, long traces can be artificially split into smaller 
traces in accordance with the scheme. Moreover in 
embedded applications traces are not too long and this is 
true of the benchmarks compiled.  
 
4. Conclusion 
 

The performance of the VLIW processors can be 
improved considerably by dividing the application into 
multiple traces and using dynamic branch prediction for 
scheduling. By speculatively scheduling traces based on 
their probability of execution, the performance obtained 

by us is approximately 1.41 times the original TriMedia 
performance. We have shown that by annotating traces 
according to their probability of execution (obtained by 
profiling the application) and scheduling them according 
to this probability the number of mispredictions incurred 
is minimal. 
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