
On Design Rule Correct Maze Routing

Ed. P. Huijbregts1, Jos T.J. van Eijndhoven and Jochen A.G. Jess
Eindhoven University of Technology, Department of Electrical Engineering

Design Automation Section, The Netherlands

Abstract
This paper addresses the problem of design rule correct rout-
ing, i.e. the avoidance of illegal wiring patterns during rout-
ing. These illegal wiring patterns are due to the set of design
rules accompanying each specific technology. To avoid soft-
ware tuning for different technologies, the routing space is
modelled as a grid graph, and all design rules are described
in terms of the grid graph, including rules that describe ille-
gal wiring patterns. The problem of finding valid, (i.e. con-
taining no illegal wiring patterns) minimum cost connections
is shown to be NP–complete, even for single nets. Although
this restriction occurs in most technologies, literature does
not mention any routing algorithm capable of handling these
situations correctly. Two heuristics are presented to solve the
routing problem, both ensuring all paths found to be valid.

1 Introduction
We are developing a generic layout system [3][4][7], in the
sense that apart from the network to be laid out, also informa-
tion about the particular technology/process, prefabricated
geometrical structures and the chosen design strategy is con-
sidered as input. Output of the layout system is a set of geo-
metric masks that guides the fabrication process of the circuit.
Each mask describes the structural pattern of some material
deposited on the silicon during the fabrication of the circuit.
To produce a technically functioning circuit, we must ensure
that the images on each mask meet certain requirements, and
that the different masks are consistent with respect to one
another. The rules that determine what is allowed here are
called design rules and they are particular to the given fab-
rication process. [6] distinguishes three types of design rules:� Spacing rules: features on possibly different masks be-

longing to different circuit elements must have a minimum
separation distance depending on the masks involved, to
prevent the inadvertent fusion of regions on the silicon.� Minimum size rules: features must have a minimum size,
depending on the mask and the feature, ensuring that no re-
gion on the chip surface that should be connected is broken
during the fabrication process.� Shape rules: features belonging to the same circuit element
must have a prescribed shape and a location in a prescribed
position with respect to one another, to ensure that the ge-
ometry of a circuit element is transferred correctly from the
masks onto the silicon.

In this paper, we distinguish two kinds of shape rules:

� Functional (shape) rules: features belonging to the same
circuit element must always have a prescribed shape and
location with respect to one another to ensure correct func-
tional behavior.� Critical (shape) rules: features may never have a pre-
scribed shape and location with respect to one another to en-
sure correct electrical behavior.

Practically in all technologies, critical rules of some kind oc-
cur. For instance, the use of stacked vias is often prohibited.
We will show the introduction of such rules results in NP–
hard routing problems. However, algorithms presented in lit-
erature sofar, that claim to be able to handle complicated de-
sign rules. e.g. [5][8], pay no attention to the effect they have
on the increasing complexity of the routing problem.
Apart from strict geometrical design rules that must be com-
plied with, there are also some patterns that are not forbidden
but the use of which should be limited. Usually the electrical
behavior of the circuit is influenced negatively, and/or the
reliability of the circuit is affected. For instance, the resis-
tance of polysilicon wires is much larger than that of metal
wires, thus long polysilicon wires should be avoided. Also the
extensive use of vias will influence the reliability of the de-
sign. This leads to a last type of design rules:� Preference rules: different features have different electri-

cal behavior and the use of these features should therefore
be limited.

The paper is organized as follows. Section 2 describes our
routing space model. The resulting routing problem is proven
NP–complete in section 3. Section 4 presents maze routing
principles, in order to explain the heursitics described in sec-
tion 5. Results and conclusions are given in section 6 and 7.

2 Layout modelling
To be able to cope with the diversity in technologies, pro-
cesses and the different sets of design rules that go along with
them, we introduce a general routing space model that allows
us to describe all possible design rules. We assume that the
routing space is defined by a rectangle in which the applica-
tion specific interconnections must be designed in a pre-
scribed number of wiring layers. The routing space can be
formulated in terms of a grid graph if [4][7]:� Wire widths and via sizes are not subject of design and are

uniform for every single wiring track.� Wiring patterns generated by the router are restricted to be
aligned with the Cartesian coordinate axes.

1. This work is supported by FOM under proj. nr. EEL88.1428

The routing space is modelled as a 3–dimensional undirected
grid graph G(V, E), a 3–dimensional X

�
Y

�
Z array of

vertices. A vertex (or grid point) v may be denoted by its
coordinates (x, y, z), where 0 � x � X, 0 � y � Y and
0 � z � Z. Points having the same z–coordinate constitute
a plane or layer. Usually the number of layers Z is small
compared to X and Y, giving the routing space a quasi–planar
flavor. The set Lh(a, b) � {(x, y, z) |y � a � z � b} forms a
horizontal grid line. In an analog way a vertical grid line is
given by Lv(a, b) � {(x, y, z) |x � a � z � b}. Two ver-
tices (x1, y1, z1) and (x2, y2, z2) are called neighbors if
|x1 � x2| � |y1 � y2| � |z1 � z2| � 1. The set of neighboring
vertices of a vertex v is denoted asN(v). Between each pair of
neighbors an edge exists. Thus each vertex may have up to six
edges called north, east, south ,west, up and down as depicted
in figure 1. The up and down edges represent vias, the con-
tacts between wiring patterns on adjacent layers. An edge be-
tween neighboring vertices v and w is represented as (v, w).

+x

+y

+z

Up

Down

West East

North

South

Figure 1 Orientation within grid.

Modelling spacing and size rules
A 4–tupple Di(a, b) � {c, ww, wo, wh} is associated with ev-
ery grid line Li(a, b), where i is either h or v. The absolute
layout coordinate c denotes the y–coordinate for a horizontal
grid line or the x–coordinate for a vertical grid line. The width
of wires running along the grid line, the width of via overlaps
and the width of contact holes that may be placed at grid
points along the grid line are denoted by respectively ww, wo

and wh (see figure 2). To reduce the complexity we state that
the 4–tupple does not depend on the x–coordinate of the seg-
ment of a horizontal grid line, or the y–coordinate of the seg-
ment of a vertical grid line. Furthermore we assume that the
grid definition is identical for the different wiring layers,
which implies that the layer with the highest grid resolution
dictates the grid resolution in the other wiring layers.

ww,hor

ww,ver

chor

cver
wo,hor

wh,hor

wh,ver
wo,ver

Figure 2 Via and wire segment with grid line definitions.

Note that by associating a layout coordinate c with every grid
line Li(a, b), the grid lines need not be equidistant, but are de-
termined by the condition that every possible via and terminal
position must be covered by a grid point. This condition de-
fines a lower limit on the distance between two adjacent grid
lines. Higher grid resolutions are allowed at the cost of
introducing critical rules between grid lines. These critical

rules are necessary to avoid the situation that designed inter-
connections on adjacent grid lines, which are regarded as un-
related, overlap if the actual grid line distances and intercon-
nect widths are taken into account. Higher grid resolutions
also imply that not every grid line is capable of representing
a possible wiring track in every layer and not every grid point
may represent a possible via or terminal position.
Modelling critical rules
As explained in the previous section critical rules are used to
describe illegal wiring patterns that should be avoided during
routing. To be able to explain our modelling technique we
need the following definitions.
An edge e � E is said to be active if it is part of a wiring pat-
tern. Let A � E denote the set of active edges. Edges may be
activated during routing. On the grid graph a set of critical
rules CR � 2E is given. A layout is valid if and only if	

r
 CR
|r \ A| � 0 (1)

i.e. if for all critical rules at least one of its edges is not active.
Notice, a critical rules consisting of exactly one edge prohib-
its this edge from being used by the router. The critical rule
set of a specific edge e � E is given by CR(e) �
{r � CR | e � r}. An edge e � � r, where r � CR(e) is
called a critical edge for edge e. According to equation (1),
e may only be activated during routing if	

r
 CR(e)
|r \ A| � 1 (2)

An edge that may be activated is called a valid edge. A path
p(V � , E �) is valid if all edges e � E � are valid.
Modelling preference rules
To limit the usage of non–preferred wiring patterns, the user
may assign a cost to each edge of the grid graph using the edge
labelling function c : E
 {1, 2, � � � , cmax}. The routing prob-
lem is thus assumed to be a minimum cost path problem. The
cost c(p) of a path p(V � , E �) is defined as the sum of the costs
of all edges e � E � .
Implementation aspects
Edges are not explicitly described but located at the vertices.
Each vertex contains its north, east and down edge. Thus if we
want to inspect the north edge of vertex (x, y, z) we simply
look at the north field of this vertex, whereas if we want to in-
spect its south edge we look at the north field of vertex
(x, y � 1, z). Since three edges are located at a vertex, it is nec-
essary to add three edge cost labels per vertex. In practice
however, the diversity of the occurring triples of cost labels
is not very large. Therefore the triples are stored in a table and
the index of the triple is stored at the vertex. The gain is two-
fold. Firstly, only one label per vertex is needed instead of
three. Secondly, triples describing the same edge cost labels
for the three edges are only stored once in the table.
The set of critical rules defined for an edge is stored as a list
of critical rules. For each critical rule, the critical edge set is
stored as a list of edges. To store critical rules efficiently, it is
important to know the same critical rule is usually defined for

a large number of edges of the grid graph. Thus the number
of different critical rules will not be large. Since edges are ful-
ly specified by a 4–tupple (x, y, z, d), where (x, y, z) are vertex
coordinates and d denotes the direction of the edge (one of
north, east or down), a critical edge set may be stored as a list
of 4–tupple. This allows to store these 4–tupple as offsets be-
tween the vertices rather then using their absolute coordi-
nates. Furthermore, by combining the sets of critical rules de-
fined for the three edges of each vertex into a 3–tupple and
storing this 3–tupple in a table, only the index of the table has
to be stored at each vertex.

3 Routing problems
In this section two routing problems are defined. The first
problem (VP) is concerned with finding paths that are valid,
meaning that none of the critical rules is violated. The second
problem (MCVP) also takes into account the preference rules
and concerns itself with finding valid minimum cost paths:

Problem: Valid Path (VP)
Given a graph G(V, E) and two vertices v and w. Does
there exist a valid path P(v, w)?

Problem: Minimum Cost Valid Path (MCVP)
Given a graph G(V, E, c), two vertices v and w and a
K � � . Does there exists a valid path p(v, w) with cost
c(p(v, w)) � K?

Theorem 1: Both VP and MCVP are NP–complete.

Proof: The theorem is proven by polynomial time trans-
formation from SAT [1]. Proof ommited for lack of space.

As a result, finding valid minimum cost paths is NP–hard.

4 Maze routing
Our layout system uses the k–directional maze router of [2]
[3]. It will simultaneously grow search waves around each
terminal of a net. In this section only the principle of growing
search waves is explained.
To catch the wiring actions that occur in the grid, both vertices
and edges are assigned status labels. The status of an edge, de-
noted by Se, may be one of {INITIAL, INHIBIT, IMAGE,
ROUTER}. INITIAL indicates that the edge is not used in any
wiring pattern and thus is free for routing. INHIBIT indicates
that the edge may never be used for routing purposes. An edge
has status IMAGE if it is part of a predefined wiring pattern,
and edges belonging to wiring patterns generated during rout-
ing are assigned edge status ROUTER. By definition of active
edges, A is thus given by

A � {e � E |Se(e) � IMAGE � ROUTER} (3)

The status of a vertex, denoted by Sv, may be one of {FREE,
BLOCK, START, N, E, S, W, U, D}. A vertex is labelled
FREE if all of its edges are labelled either INITIAL or
INHIBIT. Otherwise it is labelled BLOCK. A vertex is la-
belled START if it denotes a vertex belonging to a terminal
of a net routing problem and it is labelled N (E, S, W, U or

D) if it is reached during routing from its north (east, south,
west, up or down) neighbor.
A vertex w � N(v) is an extension of v if Sv(w) � FREE
and Se(v, w) � INITIAL. The cost c(w) of an extension is de-
fined as c(w) � c(v) � c(v, w). Extensions are stored in a
priority queue keyed by their cost. A vertex is expanded if its
extensions are queued.
Suppose that we want to determine minimum cost paths be-
tween a root vertex r and all other vertices. The router queues
this vertex with cost c(r) � 0. By repeatedly extracting from
the priority queue the cheapest extension and expanding it,
new vertices will be reached. The set of vertices thus reached
is called a search wave. The set of edges through which a new
vertex w is reached constitutes a minimum cost path p(r, w).
To be able to trace such a path efficiently, w changes its status
label Sv(w) from FREE to one of N, E, S, W, U, D, represent-
ing the direction from which w is reached. Notice that chang-
ing the status label of a vertex prevents it from being expand-
ed more than once and hence no selfloops are generated
during search wave expansion. See figure 3.

expanded vertex
backtrace

possible extension
root vertex

Figure 3 Search wave expansion around one root vertex.

5 An efficient heuristic
Suppose that a search wave is started around root vertex r.
The search wave will grow by extracting the cheapest exten-
sion, say e(v, w), from the priority queue and adding it to the
search wave. Let r � CR(e) be a critical rule defined on e,
then any critical edge ec � r may be one of 4 types:

1 ec � Esw and Se(ec) � INITIAL � INHIBIT.
2 ec � Esw and Se(ec) � IMAGE � ROUTER.
3 ec � Esw and ec � p(r, v).
4 ec � Esw and ec � p(r, v).

Here, p(r, v) denotes the path by which the vertex v is reached
from the root of the search wave according to the trace back
information and Esw denotes the set of edges that is covered
by the search wave (see figure 4).

root of search wave

expanded vertex

1

4

3

2

wire
backtrace

extension

critical rule

Figure 4 Edge types occuring during search wave expansion.

Edges of type 2 and 3 form the set of edges that may cause the
extension to be invalid. Notice that type 2 edges are consti-

tuted by already existing wire patterns. The effect they have
on the validity of an extension is called the external–blocking
effect. Edges of type 4 are created during search wave expan-
sion. In a way, the search wave blocks it own expansion. This
effect is called the self–blocking effect. These edges do not af-
fect the validity of the current extension, since by definition
none of them belongs to the path containing the extension.
We will present two heuristic extensions on the basic maze
routing algorithm. Both of the heuristics check the validity of
an extension extracted from the priority queue, and based on
the outcome of this check, the extension may or may not be
added to the search wave. Thus the validity of the minimum
cost paths found is ensured. The heuristics differ in run time
complexities and in the fact that only one of them is able to
distinguish between type 3 and 4 edges.

procedure � � � � � � � � � � � � � � ! � � " ! � � # $ % & &
for ' ((�) * + � � & do

if , � - . , / �
return � ! # ' (� 0 fi od 1

return # ' (� 0 1
Heuristic 1 assumes that during search wave propagation
each newly added valid extension changes its edge status
from INITIAL to ROUTER. After a valid path is found the
status of all edges of the search wave not along the path are
reset to INITIAL. This way, all edges belonging the search
wave are active and hence no distinction can be made be-
tween edges of type 3 and 4. Every time a possible extension
is extracted from the priority queue, its validity is checked
against all active edges in the grid graph, thus also against all
edges e 2 Esw.

procedure � � � � � � � � � 3 � � � � ! � � " ! � # $ % & &� 4 5 # 1
while 6 7 � � & 8 6 9 . + 9 do

let � : ; � � � � # � � � � < " � ! � � 0 � " ; = 6 7 � � & 16 > � � � � $ � : & & 4 ? + @ A 9 B + 1 � 4 ? � : od;� � � � � � � � � � � � � � ! � � " ! � # $ % & & 1� 4 5 # 1
while 6 7 � � & 8 6 9 . + 9 do

let � : ; � � � � # � � � � < " � ! � � 0 � " ; = 6 7 � � & 16 > � � � � $ � : & & 4 ? C D C 9 C . E 1 � 4 ? � : od;

To distinguish between type 3 and type 4 edges, heuristic 2
assumes that the edge status of newly added extensions re-
mains INITIAL until a valid path is found. After such a path
is found only the edges along the path will change status from
INITIAL to ROUTER. Whenever a possible extension (v, w)
is extracted from the priority queue, the status of all edges
along the path p(r, v) is set to ROUTER. Next the validity of
the extension is checked and depending on the result of the
check the extension is added to the search wave. After check-
ing the validity of the extension the status of all edges along
the path is reset to INITIAL.
Neither of the presented heuristics guarantees to find a mini-
mum cost path. This is easily seen by the example in figure
5. When a search wave is grown about vertex v, vertex u is
reached via p1 with cost 2, search wave expansion is stopped

in this direction because paths p1 and p3 are mutual exclu-
sive, and p4 is found as a solution. If however, u was reached
through p2 with cost 3, the minimum cost path
p(v, w) F p2 p3 with cost 4 was found. Furthermore neither
of the heuristics guarantees to find a path. For example no
path was found if p4 did not exist.

p1, 2

v

u

w

mutual exclusive paths

p2, 3

p3, 1

p4, 5

u
w

v

1 2

2

2

1

11

Figure 5 A valid path p(v,w) through u of cost 4 exists. How-
ever both heuristics find a valid path of cost 5.

Run time complexity
Suppose that a search wave is grown around a vertex r of a
grid graph extending into infinity in all directions, and that
the cost is 1 for all edges of the graph. The search wave is
grown until all vertices are reached that have a distance n to
r. It is easy to see that the number of extensions is then

#extensions F G n

i H 0

6i F 2n(n I 1). (4)

Assume that the maze routing algorithm only takes constant
time to handle each extension (this is a valid assumption [2])
and that the time to check the validity of an edge is O(c),
where c is the number of critical edges to be checked for each
extension. Then the run time complexity of heuristic 1 is
O(cn2). To compute the run time complexity of heuristic 2
one should realize that for each extension (v, w) at distance
i from r, the path p(r, v) is traced back twice, once to activate
the edges and once to de–activate them, passing 2i exten-
sions, leading to

#extensions F G n

i H 0

6i.2i F 2n(n I 1)(2n I 1). (5)

Since the number of edges checked remains 2n(n I 1), heu-
ristic 2 has run time complexity O(n3 I cn2).

Speed up
The following observations lead to a speed up of the heuris-
tics.The external–blocking effect is minimized by changing
the edge status to INHIBIT for all edges e 2 E with which
|r \ A| F 1, r 2 CR(e), since these edges are no longer val-
id. Furthermore, the number of edges traced back for each ex-
tension by heuristic 2 may be bounded. Let c denote the cost
with which an edge is reached from the root of the search
wave. Then backtracing may be stopped if an edge is reached
for which c is smaller than the minimum c of all critical edges
defined for the extension. (We did not implement the above
method because an extra label for each edge is needed to store
c, resulting in a large increase of memory).

6 Results
A number of circuits has been designed. All designs were
made using process ECPD15/1, provided by EuroChip. This
technology offers 3 layers for routing, one polysilicon layer

ps and two metal layers, respectively in and ins. Design rules
prohibit the creation of a via from ins to in above either a via
from in to ps or any wiring pattern in ps. The prohibited wir-
ing patterns and their resulting critical rules are shown in fig-
ure 6.

layer ins

layer in

layer ps

Figure 6 Illegal wire patterns for process ES2, and corre-
sponding critical rules.

Suppose a routing problem consists of connecting two termi-
nals, one positioned in the ps layer, the other in the ins layer
as shown in figure 7. Assuming all edges to have the same
cost, heuristic 1 is unable to solve this problem because of the
self–blocking effect. To overcome this problem, we can tune
the edge cost to minimize the self–blocking effect, thereby
prohibiting the use of the edge costs to model the preference
rules. Heuristic 2, however, is able to solve this problem re-
gardless of the edge cost. Therefore, no edge cost tuning is
necessary and edge costs can be used to truly reflect the pref-
erence rules.

ins

in

ps

Figure 7 Heuristic 1 fails if all edge costs are equal. However,
heuristic 2 will always find a connection.

All circuits were routed by both heuristics. Both heuristics
used the same placement and global routing for each circuit,
however, edge cost tuning is used for heuristic 1. Results are
shown in table 1 and 2. Both tables list the name of the circuit
in column 1, followed by the number of nets and the number
of nets that failed to be routed in column 2. Furthermore the
average net length is given (only nets that were completed by
both heuristics were taken into account) for each circuit and
the total number of extensions that were checked on validity
during routing in respectively column 3 and 4. For heuristic
2, also the number of traced back edges and its ratio with the
number of extensions is given in column 5 and 6. Finally the
last column shows run times in seconds.
As can be seen from the results heuristic 2 is able to complete
more nets as expected and the average net length is slightly
smaller when compared to heuristic 1. This can be explained
due to the fact that heuristic 1 is more restrictive than heuristic
2, in the sense that no distinction is made between edges of
type 3 or 4. Thus, extensions seen to be valid by heuristic 2
may be seen invalid by heuristic 1. Heuristic 2 is seen to be
slower than heuristic 1, due to the backtracing of the edges

along the path of an extension. Experiments on larger circuits
show a linear dependence between the number of extensions
and the number of traced back edges.

Table 1: Results of heuristic 1.

circuit #nets (failed) av. length #extensions (x103) time (s)

mult4 55 (2) 47,89 391 10

rd53 71 (0) 35,73 267 8

prim8 159 (1) 104,93 2.960 87

prim9 473 (3) 148,12 8.401 241

Table 2: Results of heuristic 2.

circuit #nets
(failed)

av.
length

#extensions
(x103)

#backtraces
(x103)

ratio time
(s)

mult4 55 (1) 46,25 305 1.644 5,38 14

rd53 71 (0) 35,59 245 281 1,15 9

prim8 159 (0) 105,2 2.740 4.231 1,54 101

prim9 473 (1) 146,54 7.931 25.808 3,25 319

7 Conclusions
We have shown that it is possible to model the routing space
as a grid graph and describe design rules in terms of this grid.
The notion of critical rules is introduced to describe wiring
patterns that should be avoided during routing. The resulting
routing problem, that of finding minimum cost connections
containing no illegal wiring patterns, is shown to be NP–com-
plete, even for single nets. Two heuristics are given to solve
the routing problem. One heuristic has lower run time com-
plexity but is more restrictive than the other, in the sense that
the latter will be able to solve more of the routing problems.

References
[1] Garey, M.R. and D.S. Johnson, ”Computers and Intractability:

A Guide to the Theory of NP–Completeness,” Freeman, San
Fransisco, CA, 1979.

[2] Huijbregts, E.P. and J.A.G. Jess, ”A Multiple Terminal Net
Routing Algorithm Using Failure Prediction,” Proc. Int. Conf.
on VLSI Design, Bombay, India, pp. 84–89, 1993.

[3] Huijbregts, E.P. and J.A.G. Jess, ”General Gate Array Routing
using a k–Terminal Net Routing Algorithm with Failure Predic-
tion,” in IEEE Trans. on VLSI Systems, vol. 1, nr. 4, december
1993.

[4] Jess, J.A.G. and A.G.J. Slenter, ”The prototype of an open de-
sign system for gate arrays”, ESPRIT ’86, Results and Achieve-
ments, pp. 541–550, 1986.

[5] Lau, K.M., C. Wiley and S.A. Szygenda, ‘‘M3DII: a configur-
able multilayer router for compact custom cell design,’’ in Proc.
Int. Symp. on Circuits and Systems, vol. 4 of 5, pp. 1928–1931,
Singapore, june 11–14, 1991.

[6] Lengauer, T., ”Combinatorial Algorithms for Intergrated Cir-
cuit Layout,” John Wiley & Sons, Inc., 1990.

[7] Slenter, A.G.J., ”A Generalised Approach to Gate Array Layout
Design Automation”, Ph.D. dissertation, Eindhoven University
of Technology, The Netherlands, 1990.

[8] Yamauchi, T., T. Nakata, N. Koike, A. Ishizuka and N. Nishigu-
chi, ‘‘PROTON: a parallel detailed router on an MIMD parallel
machine,’’ in Proc. Int. Conf. on Computer Aided Design, pp.
340–343, november 11–14, 1991.

