2

BEHAVIORAL SPECIFICATION
FOR SYNTHESIS

Jos T. J. van Eijndhoven!, Jochen Jess!
Jens P. Brage?

L Eindhoven University of Technology
2 Technical University of Denmark

ABSTRACT

This chapter describes some results of the AsCIS project on behavioral spec-
ification languages and models used as input for high-level synthesis. Three
very different languages have been investigated for input specification: SILAGE,
HARDWAREC, and VHDL. For VHDL, a semantic and syntactic subset suitable
for high-level synthesis has been chosen; an important characteristic of this
subset is asynchronous communication. The specification languages are con-
verted into a data flow graph representation. A data flow model is presented,
which supports hierarchy and special control constructs for conditional and it-
erative statements and maximizes the opportunities for global optimizations.
Standardization at this level enables a synthesis environment which supports
different synthesis trajectories starting from a common entry point. Moreover,

it has facilitated exchange of examples and algorithms between the project
partners.

1 INTRODUCTION

High-level synthesis concerns generating an architecture (a network at the reg-
ister transfer level) that implements (executes) a given behavioral specification.
Since the space of possible solutions is extremely large, both hard constraints
and optimization criteria are applied. Due to the complexity of the problem,
finding the optimal solution cannot in general be guaranteed. This results in
different ways of partitioning the synthesis problem and different heuristics to

23

24 CHAPTER 2

solve subproblems. The partitioning in and ordering of the different subprob-
lems, and the specific algorithms used to solve each of them, very much depend
on the application domain. Signal processing, video algorithms, controllers,
and microprocessors require different optimization strategies to end up with
good architectures.

In the ASCIS project, different groups concentrated on architectural synthesis
for different application areas, as described in the subsequent chapters of this
book. To allow exchange of examples and algorithms, a common interface was
needed at the level of behavioral specifications. While different research groups
worked with differeut specification languages, partly for historical reasons but
more importantly because-of suitability-for their application domain, it was
decided to make data exchange at the data flow graph level. The main reasons
were:

m Data flow graphs are a suitable starting point for architectural synthesis,
since they allow maximal freedom in exploiting area/time tradeofs and do
not impose real restrictions towards different design styles.

m To start architectural synthesis, an initial data flow analysis is required.
It is also this process which resolves the very different nature of current
designer interface languages (VEDL, HARDWAREC, SILAGE, ...). By stan-
dardization on the result of this analysis, the input alternatives become
available for all the synthesis projects.

m Unlike many designer-oriented specifications, data flow graphs are semanti-
cally clean and simple, thus forming an unambiguous behavioral definition
suitable to interface to or exchange between synthesis packages, as well as
to formal verification.

m Various optimization tools that perform manipulations at the data flow
graph level become generally available in the synthesis projects.

5

As result of this approach, the data flow graphs serve as an intermediate for-
mat, and a system structure as outlined in figure 1 is obtained. The formal
verification is included to check thoroughly for design errors in the initial be-
havioral specification, which is of utmost importance with complex ASICs: one
cannot afford the time and money for a major redesign. The required type of
verification at this stage is sometimes referred to as model checking: verifying
whether the current specification guarantees certain desired properties [6, 7].
This is opposed to other types of verification, where two different specifications
are checked for equivalence or where a developed implementation is checked

Behavioral specification for synthesis 25

Figure 1 The language interface.

to fulfill the initial specification, as described in section 4 of chapter 10. To

~ allow for formal verification, the semantics of the data flow graph must be accu-

rately and unambiguously defined. The definition of this intermediate format
is therefore done in close cooperation with the development of the verification
methods.

The next section will treat the data flow graph standard, as developed in the
Ascis project, with topics like design criteria, allowed graph structures, se-
mantics, syntax, and later extensions. Section 3 discusses designer-oriented
specification languages. It will focus on the suitability of VHDL and a newly
developed VHDL subset for high-level synthesis.

2 THE ASCIS DATA FLOW GRAPH

1 Background

The data flow graph model for the Ascis project [16] is based on earlier work
at the Eindhoven University of Technology: both theoretical work [17] and the
application in synthesis {14]. The model was designed to combine a unique set
of features, which set it apart from other approaches [5, 12, 19]:

® The data flow graphs are allowed to contain conditionals as well as loop
constructs. A token flow semantics is responsible for a concise behavioral
model, without the need for additional external control information. Hav-
ing conditionals and loops coherently represented in the data flow graph
allows synthesis programs to perform several global optimizations, unin-
hibited by block boundaries, as are imposed by most other representations.

26 CHAPTER 2

m A flexible and open approach to data typing is used, allowing numeric as
well as bitwise operations on the same values, and supporting easy addition
of new {or design-specific) datatypes.

® Dedicated nodes can be used for input and output operations, allowing the
specification of sequences of reads and writes on one physical port, condi-
tional I/O, or the sharing of one physical port with several hierarchically
structured subgraphs.

8 The exchange format is a textual file with a Lisp-like syntax. This makes
the format easily extendible for local or future needs, while maintaining
backwards compatibility with older programs that do not understand these
extensions.

2 The data flow graph

A data flow graph is a graph where each node represents an operation, and
the edges represent the transfer of values between the nodes. The edges attach
at ports of the nodes. The ports are either input ports or output ports. The
behavior of a node is defined as a behavior between its ports. A crucial property
of the data flow graph is that each input port has precisely one edge attached
to it, whereas the number of edges on an output port is left free.

The behavior of the graph is defined by a token flow mechanism. A token
flow machine is a graph where the nodes represent operations, and the edges
transport tokens from the origin node to a destination node (directed edges). A
token can correspond to a new data-value—such a token is called a date token—
or it is just a signal which can enable the destination node (a sequence token).
A token stays on an edge until it is consumed by the node at its destination.
In principle, it is allowed to have multiple tokens on an edge, in which case
they maintain their order: a queue of tokens. The execution of a node can
start when a token is available on each input port. The node then takes the
input tokens away and starts its execution. After execution, the node places
one output token (which may contain a computed data value) on each output
port and the edges transport these tokens to the next nodes. If multiple edges
connect to an output port, each edge obtains a copy of the token.

Classification of nodes and edges

Two types of edges are distinguished by the kind of tokens they transport.
Data edges transport tokens containing actual data values. Sequence edges

Behavioral specification for synthesis 27

carry tokens of which the data value is to be ignored: they are used to enforce
a certain sequence in the execution of the nodes.

Several different node types are distinguished:

Operation nodes: These nodes represent operations like arithmetic opera-
tions (+, —, x, <), boolean operations (A, V, <, >), or more complex
operations. The complex operation nodes provide hierarchy within the
graph semantics as used in description languages (procedures, functions).

Input and output nodes: A graph links with the outside world exclusively
through its input and output nodes. Nodes of type output are the only
nodes without output ports; nodes of type input are the only nodes without
input ports.

Constant nodes: Nodes of type constant are nodes that generate a constant
data value at their output port.

Control nodes: Such nodes are used for building control structures, such as
if-then—else or while-do constructs.

Get/put nodes: These nodes correspond to actions performed on physical
terminals of the generated network. On one terminal, a sequence of read
and/or write actions can be performed.

Delay nodes: Nodes of this type are used to reference data values from pre-
- vious-executions of the graph-or to explicitly indicate pipelining. At ini-
tialization time of the graph, the node causes an initial token to emerge at

its input and otherwise just passes all incoming tokens to its output.

Array nodes: An array represents the explicit storage of values, and can be
referenced with update and retrieve nodes.

Data flow analysis

Variables as used in hardware description languages or ordinary programming
languages attach names to values, which are inputs and outputs of expres-
sions. In a data flow graph, values obtained from expressions are transported
by tokens. Removing the explicit reference to variables in an input language,
and creating a data flow graph with a single edge to each input port is called
data flow analysis. When no loops are present, this is a straightforward and
fast process, well known from compiler technology. See, for example, the pro-

28 CHAPTER 2

Procedure swap(a,b)

begin h = a;
a = b;
b = h;
end

Figure 2 The swap algorithm and its data flow graph.

el

d

_ . G

X = a-b; &y
d++;

d

Z = el+e2+e3+e4d;

Figure 3 Simple expressions and their data flow graphs.

cedure swap which exchanges its two arguments in figure 2. However, when
potentially data-dependent loops including indexed variables are present, the
analysis becomes much more complex. This problem is addressed in chapters 4
and 5.

Expressions are built by using operation-type nodes and data edges. An opera-
tion node contains one or more input ports and one or more output ports. The
translation of a few simple expressions is given in figure 3. Note that the ports
must be annotated for the inputs of the “—” operator node. Obviously, tree
height reduction can optionally be applied to the resulting data flow graphs,
shortening, for instance, the path length through the adders.

Operation and procedure nodes

Procedures are used for a hierarchical description of a design or to break down
the description into several smaller parts. A procedural description results
in a graph that describes the behavior or semantics of the procedure. The
instantiation (call) is done with a node whose type corresponds to the name of

Behavioral specification for synthesis 29

Figure 5 a) Branch node; b) Merge node.

the graph. The behavior of the instantiation is by definition identical to the
in-place expansion of the graph contents.

Each instantiation node belongs to the class of operation type nodes, or equiv-
alently, an operation node is an instantiation of an implicitly predefined graph.

The ports of the node correspond to the input and output nodes of the corre-
sponding graph (see figure 4).

Conditional statements

A graph construct for a multiway conditional case statement is available, which
is also used for representing simple if-then(-else) statements. The sub-graph
which implements the test expression delivers a data token, whose value selects
one of several subgraphs to be executed. This is implemented by branch and
merge nodes, which route incoming tokens to one of the subgraphs, and gather
the tokens again to a common output for later use (see figure 5).

30 CHAPTER 2

XY

fﬁem;bédy;t

€x ket L%

Figure 6 Template for conditional statements.

A branch node executes when tokens arrive at the data input and the control
input. According the value of the control token, one of the output ports is
selected to pass the token from the data input. The output port selected is
identified by a table look-up with the control value.

A merge node, on the contrary, executes when a token has arrived on its control
input and a token has arrived on the port identified by the value of the control
token. After the execution of the merge node the token on the selected input
is passed to the output.

For the construction of a conditional structure, all bodies are investigated and
for each needed input value, a branch node is created. For each computed value
that is used later outside the conditional construct, a merge node is created.
Then, all control inputs of both the branch and merge nodes are connected to
the result of the test expression (see figure 6).

Loops

For the implementation of loop constructs, the entry and ezit control nodes are
used, which are similar to merge and branch nodes. Figure 7 shows the graph
structure of a while-do-loop. A do-while loop (where the body is always exe-

Behavioral specification for synthesis 31

“loop=body

™~ _sequence
~
datal

data

Figure 7 Example of a while-do loop. Figure 8 A constant node.

cuted at least once) is easily made by moving the loop body into the downward
edges. To obtain the proper executional semantics, the semantics of the entry
nodes define that an initial token, choosing the external entry in the loop, is
placed at their control input at graph initialization time.

Constants

For the generation of constant values in the algorithmic description, constant-
nodes are defined.. These nodes deliver.the (specified) constant value to their
output port when the nodes are executed, and can be regarded as unary oper-
ators. A sequence edge is connected to deliver the enabling token; see figure 8.

Input/Output

For the data flow graph, a provision for communication with the external (non-
DFQG) world is made by get and put nodes. These nodes respectively read from
and write to physical terminals. During synthesis, these nodes are mapped on
hardware modules, whose implementation can depend upon the semantics of
the external world (straightforward pass-through, handshake, bus resolution).
In general, several get and put nodes operate on a single physical terminal.
To group these nodes together and fix the sequential ordering of the I/O op-
erations, they are serially linked with sequence edges. This path of sequence
edges can be continued through conditional constructs, loops, and procedure
instantiations. Therefore, the path always starts and ends at an input and out-

32 CHAPTER 2

Figure 9 1/0 operations. Figure 10 Array operations.

put node, respectively. See figure 9 for a graph corresponding to the following
statements:

Terminal p;

x = Get(p);

y=x+3;

Put(p, ¥);
Arrays

An array node establishes a (possibly multidimensional) array of values. It is.
activated by an incoming sequence edge, like a constant node. The array values
can be read or written by subsequent retrieve or update nodes, respectively.
Initially, these nodes will probably occur in a serial chain of sequence edges,
starting at the array node; see figure 10. If it is possible to determine a (partial)
independence between the update and retrieve nodes by analyzing the applied
index expressions, the chain can be transformed into a rooted directed acyclic
graph, allowing more freedom for the synthesis process.

Behavioral specification for synthesis 33

3 DFG semantics

As explained in the previous section, the data flow graph has an executional
semantics. The semantical definitions were chosen to obtain a set of desirable
properties. Assume that a DFG satisfies the following rules:

All input ports of all nodes have exactly one incoming edge.

The conditional and loop constructs partition the graph in separate bodies,
as outlined in figures 6 and 7.

The graph becomes acyclic by detaching all edges into delay nodes and
entry nodes (except for leaving the edge at the entry port 0 which externally
feeds the loop; see figure 7).

If an operation node is executed, it fetches precisely one token from each
input, and generates precisely one token at each output port.

Then, the following properties can be formally proven [7]:

If a graph is provided with one token at each input node, nodes in the graph
can be executed until finally one token appears at each output node. (As a
consequence, the graph can be instantiated elsewhere as operation node.)

If so desired, the execution order can be chosen in such a way that at most
one token is at any edge at any time.

The result of the graph execution (the data values in the final tokens) does
not depend upon the chosen order in which the nodes are executed.

After execution of the graph, no tokens remain in the graph, except re-
placements for the tokens that were inserted at initialization time (i.e., the
tokens at the control inputs of the entry nodes, and at the inputs of the
delay nodes).

If a sequence (queue) of tokens is provided for each input node, again nodes
can be executed in any chosen order, resulting in a unique queue for each
output node. (The different sets of input tokens can never intermix or
influence each other.)

This last property is useful for studying pipelined or multithreaded architec-
tures. Together with the more flexible I/0, it compares favorably with the
otherwise resembling approach of SiL [11].

34 CHAPTER 2

The defined executional semantics is based on presence and passing of tokens
(discrete data values), and thus fixes an algorithmic behavior. On purpose,
nothing is said about time. This leaves maximal freedom to optimize timing
aspects during synthesis, without disturbing the algorithmic behavior. For
example:

m Although the execution of loops seems to be sequential by nature, it is
perfectly legal to have all iterations of the body executed in a single clock
cycle. Also with real sequential executions, for instance one variable of
the loop can cycle with twice the iteration speed of another variable in the
same loop.

m The time needed to execute an operation is not a property of the data flow
node, but instead a property of the hardware module that is assigned to
execute that node. As a result, different nodes of the same operation type
can be assigned to different hardware modules, which behave differently
over time.

a If an operation with three inputs and two outputs executes, it consumes
three input tokens and produces two output tokens. Seen in time it might
first consume two tokens, then produce one output token, then eat the
third token, and finally produce the last output token.

Besides as a property of the hardware modules, time can come in as designer-
specified constraints. These are added into the graph as sequence edges, labeled
with the time constraints. A detailed coverage falls outside the scope of this
chapter.

4 DFG textual format

To store and exchange the data flow graphs, a text-based format is used [16].
This permits an easy interface to various programming languages and transfer
between different machines. The brace-oriented syntax style using a pair of
braces for each keyword (like Lisp and EDIF) ensures simple parsing: any LL-1
parser, such as a recursive descent parser, is strong enough. It furthermore
permits local and future extensions to the format, without disturbing already
existing software (both upwards and downwards compatibility), and does not
require a set of reserved words forbidden as identifiers.

Behavioral specification for synthesis 35

The basic format is very simple: every statement forms a list. Any list starts
with an opening brace and a keyword on which the application determines its
interest in the list. The items of the list are names, numbers, and other lists, and
the list is terminated with a closing brace. If an application is not interested in
the information attached to the keyword—or does not recognize the keyword—
it can skip this list, without knowing anything about its (structured) contents,
by just counting braces. Hence, every tool or site is free to add more data for its
own purpose. This property was considered highly important. The following
fragment gives an impression of the textual format:

(dfg-view
(graph fdct
(node N-10 (type +)
(in-edges E-9 E-8) (out-edges E-34 E-28))
(edge E-34 (type data) (varname X0)
(origin N-10) (destination N-23 (port left)))
(edge E-28 (type data) (varname X0)
(origin N-10) (destination N-20))
(node N-11 (type +)
(in-edges E-11 E-~10) (out-edges E-32 E-30))

5 Recent developments

During the last year of Ascis, the DFG format was extended to support inter-
mediate or full synthesis results, and a standard way to include and describe
libraries was introduced. Such an extension greatly enhances possible cooper-
ation between the partners, by allowing the comparison or use of each other’s
algorithms for individual synthesis steps (scheduling, allocation, binding, and
network generation). The extension is basically made by adding two new types
of graphs, a control graph (CTG) and a network graph (NWG), next to the
existing data flow graph. Whereas the DFG defines the algorithmic behavior,
the CTG fixes the timing behavior and hints on the controller design, and the
NWG defines the hardware on which the algorithm executes: the final synthesis

result. All these extensions have not yet been incorporated into the systems of
the ASCIS partners.

36 CHAPTER 2

Figure 11 The control, data flow, and network graphs.

The control graph basically corresponds to the finite state diagram, as com-
monly drawn for controllers. However, we extended its semantics to allow
concurrent multiple active states, and hierarchical structuring of such graphs.
This allows multithreaded operation, as used, for instance, in chapter 9. The

result of scheduling can now be expressed as links between DFG and CTG
nodes. :

The network graph describes the final network that results from the architec-
tural synthesis. The nodes in the graph correspond to physical modules to be
used in the final architecture. Initially, the graph might contain a set of nodes
only (no edges), indicating the set of hardware modules on which the algorithm
must be executed: the result of module allocation. Later, links between DFG
nodes and NWG nodes indicate which operations are mapped onto which mod-
ules: the result of binding. Similar notions hold for register files and busses.
Finally, the fully interconnected network follows as result. These node links
are shown in a tiny example in figure 11.

Besides links between nodes, links between graphs are supported. These express
relations such as “this DFG is controlled by this CTG,” or “this NWG is a
possible implementation of this DFG.” These graph links allow, together with
the hierarchy concepts, the description of the synthesis library (operations,
modules, and their relations) in the same terms, by adding a DFG without
body for each operation and a NWG without body for each module.

A programming interface has been developed to manipulate these sets of graphs,
suitable to be used in all tools, with the following features:

Behavioral specification for synthesis 37

® The interface provides functions to access and manipulate graphs in the
three domains (data flow, control, network), and the links between them.
The consistency of the data structures is enforced by the interface.

m No assumptions are made on the actual high-level synthesis method used
or on the order of solving different subproblems. The basic functionality
is sufficient to represent any partial synthesis result.

= Each application can extend the provided data structure for its own needs
by means of object inheritance. This does not affect the functionality of the
library. In particular, the writer and parser accept the extension without
the need for recompiling the interface library.

m The interface has a parser and a writer to exchange data between tools
as textual files. Data added by one application remain hidden for other
applications that are not prepared to use them.

3 INPUT SPECIFICATION LANGUAGES

Ideally, the same language should be used at all points in the synthesis process.
Unfortunately, different purposes in language usage tends to result in language
requirements which cannot be reconciled. In particular, for high-level synthesis
the following two purposes are important:

® For human specification of the input to high-level synthesis, the important
language features are conciseness and portability. Standard languages,
such as VHDL, are well suited for this purpose.

m For internal use in the synthesis tools, simple and well-defined languages
are highly desirable. The token flow model described above is particularly
well suited for this purpose.

Because of this dichotomy in the language requirements, several languages must
be used. This imposes the condition that either all the languages support
the same interface semantics, or the language definitions provide an external
conversion methodology between the interface protocols. For both the behavior
defined on the interface and the internal behavior of a block, specification of
the desired behavior must consider both functionality, sequencing, and timing.

Three hardware description languages were of particular interest as input lan-
guages in the ASCIS project: SILAGE, HARDWAREC, and VHDL.

38 CHAPTER 2

1 Silage

SILAGE has relatively old roots—it was conceived around 1983—and was specif-
ically designed to drive synthesis systems [10]. The language specifies behavior
in a functional style, where each variable is assigned only once, and is geared
towards real-time digital signal processing applications, for which it permits
a very compact specification. The language implicitly assumes an outer loop
which infinitely repeats over time, presenting a new set of input data values for
each execution. A compact and elegant “delay operator” is used to reference
values from previous execution phases. As basic data types, the language sup-
ports 2’s-complement integers, fixed-point numbers of any specified precision,
and bitvectors. Powerful constructs are available to handle arrays, and the
language has conditional statements, loops, and functions. Loops are expected
to be manifest, i.e., the loop bounds can be evaluated at compile time and do
not depend on run-time data values.

2 HardwareC

HARDWAREC is designed to drive architectural synthesis over a large spec-
trum of application areas [8]. It features both a procedural part to describe
algorithmic behavior and a declarative part to describe a network of intercon-
nected components. For communication between concurrently active processes,
it furthermore explicitly supports message passing channels. In the algorithmic
part, the language basically supports only bitvectors for data; these may be
interpreted as 2’s-complement integers. Loops and bitvector indices must be
resolved at compile time, and the language lacks an array construct. Support
is provided for explicit specification of timing constraints.

To overcome some of the limitations, the ASCIS group at Darmstadt has devel-
oped an enhanced HARDWAREC with more advanced data types {e.g., arrays
are allowed). However, the support for network structures was dropped. See
chapter 8 for a description of the Darmstadt synthesis system.

3 VHDL

VHDL was approved as an IEEE standard in 1987 and has gained considerable
momentum in the last few years {18, 1]. The language model can be described
as a network of interconnected components, each of which has an algorithmi-
cally described behavior. The expressive power of the language is very large:
all basic data types, including subranges, records, and arrays, are supported;

Behauvioral specification for synthesis 39

overloading permits operators and functions to be redefined for different data
types; and powerful configuration control statements are provided. Even con-
structs difficult to realize in hardware, such as file access, unconstrained arrays,
and dynamic memory allocation, are provided.

The expressiveness makes the language attractive for many applications, and
allows, for instance, its use for both the synthesis input (the algorithm) and
the output (the synthesized architecture). Using commercial simulators, it is
then possible to simulate both the specification and the implementation within
the same environment.

At the time VHDL was designed, the main objective of the language was to
describe and simulate the input/output behavior of an-existing hardware mod-
ule. As a consequence, the semantics of VHDL was based on the concept of the
event-driven hardware simulator:

A process is activated when an event (typically a signal edge) occurs
on an input signal. The process then executes its algorithm in zero
time, possibly changing some output signals. The effect of the output
signal changes may be delayed by a specified time.

Unfortunately, this choice of semantics makes VHDL ill-suited as a language for
high-level synthesis: a rigorous implementation of a VEDL design must conform
to the behavior of the VHDL source code as defined by the VHDL Language Ref-
erence Manual, down to-each delta-time unit. -This would effectively require the
implementation of a VHDL simulator kernel in the hardware, which is obviously
neither feasible in practice nor the purpose of hardware synthesis. An addi-
tional problem is the large size of VHDL, which makes the design of synthesis
tools unnecessarily difficult.

Consequently, VHDL is not a viable choice for a high-level synthesis input lan-
guage. Rather than choosing an entirely different language, however, there is
an alternative: to select a subset of VHDL. Due to VHDL'’s status as a standard
and its broad acceptance, this option received special attention in the Ascis
project.

40 CHAPTER 2

4 To subset or not to subset

There are several major advantages in creating an embedded language with
VHDL as the base language:

m It becomes possible to perform mixed-level simulations on partly synthe-
sized descriptions.

s Choosing an industry standard language makes it easier to overcome the
university /industry barrier.

s It is easier to steal a language than to design one, provided that one can
avoid conflicts in the semantics.

The main consequence of selecting a subset of VHDL’s syntactics is the pos-
sibility of applying a different interpretation to the subset, i.e., it is possible
to choose semantics that are usable for synthesis. The main disadvantage of
subsetting VHDL is, of course, a loss of portability since different tools may
utilize different subsets.

When a new language is created, it is obviously necessary to ensure that the
semantics of the language are well defined. Less obvious, perhaps, is that this
is true also for embedded languages: it is extremely important to define exactly
which parts of the original language are part of the new language, and what
extensions are introduced. Failure to do so results in ambiguities, which lead
to interpretation errors and descriptions that cannot be carried between tools.

A particularly important requirement is to preserve the input/output behavior
of the original language (for the chosen subset}, with respect to some abstrac-
tion of the interface to the external world. L. Berrojo et al. [2] suggest a
subset somewhat similar to that presented in the following subsection, but the
interpretation of their subset violates this cardinal rule.

5 ProcVHDL: semantics for synthesis

PROCVHDL [4] is a subset of VHDL intended to be used as an input language for
high-level synthesis. As mentioned in the previous subsection, it is possible to
choose a new interpretation for a syntactical subset. In the case of PROCVHDL,
the new semantics are based on the following hardware model:

Behavioral specification for synthesis 41

The design and its environment are modeled as procedural functional
units in a hierarchical network, communicating by level-sensitive, asyn-
chronous protocols.

In order to ensure preservation of the input/output behavior between the VHDL
and the PROCVHDL interpretation, the following abstraction is imposed on the
interface:

Only the sequencing of input/output events is considered as important
(i.e., the exact timing is ignored).

This abstraction is acceptable for the kind of systems PROCVHDL was designed
to specify: systems employing only asynchronous protocols.! Despite the fact
that the semantics of VHDL and PROCVHDL differ considerably, it turns out
that PROCVHDL actually matches quite well with a subset of VHDL:

m The hierarchical network of PROCVHDL matches the component instan-
tiation concept for structural descriptions in VHDL, with communication
carried out by simple VHDL signals. This match would in fact be possible
for most simulator-based languages, and is mainly a consequence of the
choice of asynchronous communication protocols in the hardware model:
this model places very few restrictions on the actual low-level signal be-
havior.

m The procedural model for functional units used by PROCVHDL are well
matched by the behavioral descriptions in VHDL, whereas the functional
descriptions of many older hardware definition languages have insufficient
expressive power.

It should be noted that even as the asynchronous communication of PROCVHDL
may be embedded in VHDL’s event-based semantics, it may also be built on
top of synchronous hardware. In fact, a likely implementation of a PROCVHDL
functional unit is a synchronous finite state machine with an attached data-
path.

1Several other subsets have been suggested for synchronous systems [13, 15].

42 CHAPTER 2

6 The ProcVHDL language definition

This section describes the PROCVHDL subset. The description is far from
complete, but a more detailed description, including a full syntax specification,
is given elsewhere [3]. The two main subsetting restrictions in PROCVHDL is on
the WAIT and signal assignment statements. These restrictions are described
below. .

The ProCcVHEDL WAIT statement is strongly restricted compared to the VHDL
counterpart. Only two forms are permitted:

1. WAIT UNTIL BooleanSignal [OR BooleanSignal...];
2. WAIT FOR Time;

The first construct is used to synchronize with external events. The execution is
suspended until one or more external signals becomes active. The second form
is used to sequence output signals. A WAIT for any length of time indicates
that a given set of output signals must change before any other signal changes.
Note that the actual time specified is without importance, though it may be
useful to pace simulation of the circuit.

Notice that WAIT ON (sensitivity lists) are eliminated. Also, WAIT UNTIL
with more than a single signal is further restricted: this statement must be
bracketed by an IF statement with the negated condition. This is caused by
the fact that VHEDL (and PROCVHDL) requires a level change to break a WAIT.
This is not, in general, compatible with level-sensitive interface protocols.

The other restriction on the process statements of VHDL is on the signal as-
signment statement. PROCVHDL does not allow the VEDL AFTER clause
that is used for timing specifications—the focus of PROCVHDL is sequencing,
not timing. Also, the following restriction is imposed on signal assignments in
PrROCVHDL: it is illegal to assign twice to the same signal without an interven-
ing WAIT statement. (The first assignment could, of course, be ignored, as it
would be in VHDL, but permitting the construct would make analysis difficult.)

Behavioral specification for synthesis 43

WHILE Count < Max AND (Z.R * Z.R + Z.I * Z.I)/Unit < 4*Unit LOOP
Temp := (Z.R * Z.R - Z.1 * Z.I)/Unit + C.R;

Z.I :=2 % Z.R* Z.I/Unit + C.I;
Z.R := Temp;
Count := Count +1;

END LOOP;

Iterations <= Count -1;

WAIT for 1 ns;

Strobe <= TRUE;

IF NOT Acknowledge THEN WAIT UNTIL Acknowledge; END IF;

Figure 12 A PROCVHDL fragment.

7 A ProcVHDL example

Figure 12 shows an excerpt from a PROCVHDL specification. While this is
a small toy example, a baseline JPEG encoder/decoder has been specified in
about 2000 lines of code [9], demonstrating the feasibility of PROCVHDL for
reasonably complex specifications. The example displays a typical property of
PROCVHDL code: the input/output specification is intertwined with the general
control flow, similarly to the way data and control flow are intertwined in the
DFGs described in section 2. This is different from the typical synchronous
modeling style in VHDL, which tends to separate the control flow from the
input/output operations, thus cluttering up the model (from a human point of
view) and increasing the risk of specification errors.

4 CONCLUSION

In the ASCIS project, a data flow graph standard has been developed, targeted
towards high-level synthesis. Its coherent representation of both data and con-
trol flow and its independence of timing aspects provide extreme flexibility for
transformations and optimizations during synthesis. Furthermore, the specifi-
cation is accurate enough to allow formal reasoning about its behavior. These
data flow graphs are appropriate over a large range of application domains, can
be generated from different designer specification languages, and are therefore
suitable as interchange medium. The concept of a DFG will recur frequently
in the subsequent chapters.

44

CHAPTER 2

VHDL is not immediately suitable as a designer specification language, due to its
event-driven semantics and inherent overspecification of timing. A subset which
adheres to the original semantics of VHDL has been developed to overcome
this problem. This is achieved by restricting the interprocess communication

to asynchronous protocols, thus defining only the sequencing of input/output
events. ‘

REFERENCES

1]

2]

7]

8]

J.-M. Bergé, A. Fonkoua, S. Maginot, and J. Rouillard. VHDL Designer’s
Reference. Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.

L. Berrojo, P. Sanchez, and E. Villar. High-level synthesis and simulation
with VHDL. Proc. of Second European Conference on VHDL Methods,
Stockholm, Sweden, pages 62-69, Sep 1991.

J. P. Brage. ProcVHDL: A VHDL subset for high-level synthesis. Techni-
cal report, Dep. of Comp. Sc., Technical University of Denmark, Lyngby,
Denmark, Jun 1991.

J. P. Brage. Hardware description languages for synthesis: problems and
possibilities. Proc. of Tenth NORCHIP Seminar, Helsinki, Finland, pages
22-29. Nov 1992.

R. Camposano and W. Rosenstiel. Synthesizing circuits from behavioural
specifications.- IEEE Trans. en Comp. Aided Design, CAD-8, number 2,
pages 171-180, Feb 1989.

G. G. de Jong. Verification of data flow graphs using temporal logic. In L. J.
M. Claessen, editor, Formal VLSI Correctness Verification, VLSI Design
Methods-11: proc. of the IMEC-IFIP WG10.2 WG10.5 Int. Workshop on
Appl. Formal Methods for Correct VLSI Design, pages 169-178; North-
Holland, 1990.

G. G. de Jong. Generalized data flow graphs: theory and applications. To
appear as PhD thesis. Eindhoven Univ. of Tech., Eindhoven, The Nether-
lands, 1993. :

G. De Micheli and D. C. Ku. HERCULES—a system for high-level syn-
thesis. Proc. of the 25th Design Autom. Conf., Anaheim, CA, Jun 1988.

K. Djigande. Image compression and decompression, system architecture.
Master’s thesis, Dep. of Comp. Sc., Technical University of Denmark, Lyn-
gby, Denmark, Jul 1992.

Behavioral specification for synthesis 45

[10]

11]

(12]

[13]

(14]

[15]

[16]

[17]

P. Hilfinger, J. Rabaey, D. Genin, C. Scheers, and H. De Man. DSP speci-
fication using the SILAGE language. IEEE Int. conf. on Acoustics, Speech
and Signal Processing, pages 1057-1060, Apr 1990.

Th. Krol, J. van Meerbergen, C. Niessen, W. Smits, and J. Huisken. The
Sprite Input Language, an intermediate format for high level synthesis.
Proc. of Eur. Conf. on Design Automation (EDAC), Brussels, Belgium,
pages 186-192, Mar 1992.

J. S. Lis and D. D. Gajski. Synthesis from VHDL. Proc. of the Int. Conf.
on Comp. Design, pages 378-381, 1988.

A. Postula. VHDL specific issues in high level synthesis. Proc. of Second

European Conference on VHDL Methods, Stockholm, Sweden, pages 70—
77, Sep 1991.

L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD
Thesis, Eindhoven Univ. of Tech., Eindhoven, The Netherlands, 1991.

A. Stoll, J. Biesenack, and S. Rumler. Flexible timing specification in a
VHDL synthesis system. Proc. of EURO-DAC ’92, Hamburg, Germany,
pages 610-615, Sep 1992.

J.T. J. van Eijndhoven, G. G. de Jong, and L. Stok. The ASCIS data flow
graph: semantics and teztual format. Technical report 91-E-251, Eindhoven
University of Technology, Jun 1991.

A. H. Veen. The misconstrued semicolon: reconciling smperative languages
and dataflow machines. PhD Thesis, Eindhoven University of Technology,
The Netherlands, 1985.

IEEE Standard VHDL Language Reference Manual. IEEE Std. 1076-1987,
The Institute of Electrical and Electronics Engineers, Inc., New York, USA,
1988.

R. A. Walker and D. E. Thomas. Design representation and transformation
in the system architect’s workbench. Proc. of the Int. Conf. on Comp.
Aided Design, pages 166-169, 1987.

