
Proceedings Fourth European EDIF Forum
11–12 Oct. 1990, Warrington, England, P. 170–175

1

EDIF Level–2 to Level–0 translation

dr.ir. J.T.J. van Eijndhoven
Eindhoven University of Technology, EH 7.31

Postbus 513, 5600 MB Eindhoven
The Netherlands
jos@es.ele.tue.nl

ABSTRACT
A short description of a program is given, which is able to translate one design in a full EDIF level–2 key-
word level–3 input into an EDIF level–0 output text. The primary application of this program is simplifying
EDIF interfaces to other programs and data sets in our CAD environment. The program evaluates the
level–1 expressions and executes the level–2 control statements. Because the experience and support
for the EDIF levels 1 and 2 is still very limited, it seems useful to publish some of the gained experience.
Implementation warnings are given on parameter passing, lexical analysis, connectivity, and vectors of
length one. Other remarks are on the EDIF language itself: the limited functionality of the miNoMax type,
the scaling of integer parameters with a units declaration, the level–2 functionality, name scoping concern-
ing libraries, and the structuring of the EDIF grammar definition. Nevertheless the EDIF standard and its
EIA reference manual proved to be of high quality, and as result quite a compact full functioning program
could be built.

INTRODUCTION
This paper presents the result of some work done to create an EDIF interface to software packages in our
group. Writing any format as EDIF is in general quite simple: one needs to generate only one text out of
many possibilities. However an EDIF input must be able to handle the full language: understanding a local-
ly defined subset only is quite useless and actually violates the standard.

The functionality to enable an interface to a circuit simulator was one of the first design constraints, and
for this purpose EDIF level–1 was at least required: the parameter passing mechanism to change subcir-
cuits in a hierarchical structure was deemed necessary. Implementing a full level–1 interface is quite a job:
it requires a symbol table for local variables with full support for name scope and hiding mechanisms, and
capability to handle all data types and array dimensions, as well as expression evaluation and assign-
ments. Having this made, the step to full EDIF level–2 with conditional and repeat statements is only a
minor hop.

As result a program is developed capable of handling full EDIF level–2 input with the keyword level 3
macro expansion. For one specified design, the program will go through its top–down hierarchical design
structure, and execute all level–2 control constructs and evaluate level–1 expressions. As result an EDIF
level–0 output text is written, containing this design only. The output will of course contain different cell/
view definitions for for each different parameter set applied to any cell/view used in the design. During
this parsing and translating process, strict syntactical and semantical checking with extensive diagnostic
messages is provided. As result the actual interfaces to different programs/data sets in the IC design envi-
ronment can be simplified and released from the level–1 and level–2 complexity. Furthermore they are
allowed a more relaxed error reporting functionality. The program can optionally strip graphical, simulation,
or userdata information from the description, to further simplify its output. Another application of the pro-
gram will be verifying locally generated EDIF files, since we have yet little experience and software handl-
ing full EDIF.

THE PROGRAM
The program is built with a few relatively independent section: A lexical analyzer, a macro expansion unit,
a recursive descent parser, and a double phase execution unit. The most important data structures in the
program are the keyword table, mapping small positive integers to the keyword names and vice versa, A
name hash table, storing all identifiers and strings from the input, and the parse tree: containing a linked–
list tree structure mirroring the nested forms of the EDIF input text. This structuring of the program is shown
in the following figure:

2

lexical
analyzer

macro
expansion

syntax
parsing

parse
tree

phase 2

phase 1
execution

keyword
table

name
hash
table

diagnostic
system

user messages

EDIF
level
2

EDIF
level
0

Figure 1: The program structure

The lexical analyzer recognizes in the input stream the following different symbol types: ”(keyword”
combinations, identifiers, strings, integers, end–of–form ”)”, and end–of–file. It builds a hash table contain-
ing all identifiers and strings, providing a unique memory location for each different object. This way
memory is saved and, more important, allows name comparison in the program to be done by (C–) pointer
value comparison in stead of full string compares.
The macro expansion utility provides a full level–3 keyword unaliasing and macro expansion, by replace-
ment with the definition already stored in the parse tree. This EDIF macro utility is extremely powerful,
allowing compact specifications generating significant and complex structures.
The syntax parsing is done by a recursive descent parser, which is a very simple approach and nicely fits
the EDIF grammar structure. It doesn’t make use of large tables and (explicitly implemented) stacks as
for instance YACC parsers do.To allow a convenient specification of this parser (the grammar) the stan-
dard C preprocessor is used. This results in a compact, easy to read specification, exactly mirroring the
EDIF grammar rules as specified in the manual. A few lines of this recursive descent parser are shown
as example:

RULE Pdesign IS ZERO(n) FORM(Kdesign)
ONCE PdesignNameDef() && PcellRef()
REPEAT G(n,Pstatus) || Pproperty() || Pcomment() || PuserData()
ENDFORM

RULE Pentry IS FORM(Kentry)
ONCE (Pmatch() || Pchange() || Psteady()) &&

(PlogicRef() || PportRef() || PnoChange() || Ptable())
OPTIONAL Pdelay() || PloadDelay()
ENDFORM

Caption 1: The recursive descent parser
For every grammar rule of EDIF, a corresponding ’rule’ is written this way. The above text is intuitively
clear, which is attractive for a flexible and error–free specification. The construct ’ZERO(n) ... G(n,Pstatus)’
is used as guard for at most one occurence of ’status’ in the ’design’ rule.The preprocessor (cpp) macro
definitions translate each ’rule’ into a real C function. Every function returns ’false’ if the current input token
doesn’t match the start of its ’rule’. If the token does match, the corresponding ruleis read by this functions,
which afterwards returns ’true’. For the basic tokens special functions are added such as ’Pinteger()’ or
’Pidentifier()’. If they match the current input token, it is added to a parsetree datastructurewhich obtains
the same hierarchical tree structure as the nesting of the forms, and a new token is fetched from the input
(the macro preprocessor). If the current input token cannot be matched, an error message is issued, and

3

the rest of the current form is skipped. The parsing will then continue, checking for more errors.The error
message will show the unmatched token, the corresponding line number in the input file, and the keyword
of the surrounding form which fails.

After storing the full EDIF input, the actual execution starts, reducing the EDIF level–2 input to level–0
output. This is done in two stages: The first stage processes the specified design hierarchy in top–down
order, executing all level–2 control statements, and evaluating all level–1expressions. During this phase
all different parameter sets passed to all used views are catalogued. The second stage again executes
all used cells/views for each parameter set but now in the linear order of the EDIF input text, actually
writing EDIF output during the execution. During this second phase, new view names are introduced if
multiple parameter sets are attached to one view in the input, and for each of these parameter sets the
complete body is written. Although a single–phase execution scheme could be made, this doesn’t seem
an attractive option: A hierarchical top–down execution is required to obtain the proper parameter passing.
Really writing the EDIF level–0 output during this phase would result in a conflicting (actually opposite)
order in the output, with respect to cell definitions and instantiations. Solving this by using different output
files which could be merged later, isn’t fit very well for current generation workstations, since these are
strong in CPU power, but weak in disk I/O. The input to output translation is illustrated by the following
example:

(cell passpar (view circuit
(interface

(parameter par (integer)))
(contents

(instance P (viewRef circuit (cellRef getpar))
(parameterAssign par (integer par)))

.

.
(cell setpar (view circuit

(interface)
(contents

(instance P1 (viewRef circuit (cellRef passpar))
(parameterAssign par (integer 1)))

(instance P2 (viewRef circuit (cellRef passpar))
(parameterAssign par (integer 2)))

(instance P3 (viewRef circuit (cellRef passpar))
(parameterAssign par (integer 2)))

Caption 2a: Parameters and instances in EDIF input

is translated into:

(cell passpar
(view circuit_0

(interface)
(contents

(instance P (viewRef circuit_1 (cellRef getpar))
(parameterAssign par (integer 2))))

(view circuit_1
(interface)
(contents

(instance P (viewRef circuit_0 (cellRef getpar))
(parameterAssign par (integer 1))))

. . .
(cell setpar
(view circuit

(interface)
(contents

(instance P1 (viewRef circuit_1 (cellRef passpar))
(parameterAssign par (integer 1)))

(instance P2 (viewRef circuit_0 (cellRef passpar))
(parameterAssign par (integer 2)))

(instance P3 (viewRef circuit_0 (cellRef passpar))
(parameterAssign par (integer 2)))

Caption 2b: Parameters and instances in EDIF output

4

EDIF IMPLEMENTATION ASPECTS
During the development of the program, a growing admiration was felt for the contributors to the EDIF
version 2.0.0 EIA reference manual. Almost all anticipated problems were correctly solved by small re-
marks on the EDIF semantics and allowed use. Below a few remarks are given that might help or warn
other implementors of EDIF level–1 or –2 interfaces.

Parameter assignment
The (parameterAssign form is different and considerably more difficult to implement then the (assign
form. When an (assign is executed, the corresponding variable declaration has been executed be-
fore.Therefor the variable name is already known in the current scope, and the variable was already initial-
ized with its type, array dimension,and storage space.

In case of the (parameterAssign the corresponding (parameter declarations contained in another
cell/view context, maybe even in another library. Although this declaration is always located before the
(parameterAssign, it cannot really be processed before. This is illustrated with the following example:

(library A (technology (constant width 32))
(cell A (view A

(interface
(parameter length (integer))
(parameter (array data length width) (boolean))

.

.
(library B

(cell B (view B
(interface

(parameter b (boolean (true)))
(contents (instance a (viewRef A (cellRef A (libraryRef A)))

(parameterAssign (member data 5 1) (boolean b))
(constant length (integer 8))
(parameterAssign length (integer length))

Caption 3: Parameter assign and declaration order

It is clear that in this case the (parameterAssign to data must be executed within the scope of cell B
to solve the reference to b, and then ”remembered”: the real declaration of data, initializing its name, type,
and storage space must wait at least for the (parameterAssign to length, which is done later.
However even just after length is assigned, it is not practical to perform the declaration of data, since
this would require a context switch into the environment of cell A, library A, revealing the value of width.
Consequently, the (parameterAssign to data must be evaluated and then ”remembered”, until the
contents of library A and cell A are really processed, providing the corresponding declaration. This ”re-
membering” of assignments without having available the corresponding declaration is never needed for
an (assign to a (variable.

The lexical analyzer
The in UNIX environments omnipresent ’lex’ lexical analyzer generator is not very suitable for EDIF, since
the standard ’lex’ cannot easily handle the unlimited length of EDIF strings. Luckily a specialized EDIF
lexical analyzer is easily implemented by hand.

Graphics and connectivity
When an application is interested in the electrical network connectivity information only, it seems attractive
to just skip and discard all graphical information in the EDIF input. However in EDIF level–1 and level–2
this cannot be done in general: Due to the (xCoord and (yCoord operators, the results of graphical
data, expressions, and transformations can easily influence the basic network connectivity information.

Vectors of length one
A typedValue is used to specify a value to be assigned to a variable, constant or parameter. Its syntax
makes no difference between a scalar value or a vector of length one. Especially in the case of a (para-
meterAssign this is cumbersome: Since the (parameter declaration is not yet processed and avail-
able, the program would assume to have found a scalar value. However in the later processed (parame-
ter declaration the difference between a scalar and a vector of length one IS made! Therefor a silent and
automatic dimensionality conversion is needed in such a case. This can also be seen as an inconsistency
in EDIF.

5

COMMENTS ON THE EDIF STANDARD
Besides remarks on implementation issues, the work on processing the level–1 and level–2 EDIF forms
also leads to some remarks on the EDIF standard itself.

Functionality of miNoMax
The EDIF value type (miNoMax seems almost useless within its current restrictions. These values can
be created with the (mnm construct, and copied between variables and parameters with the (assign
and (parameterAssign respectively. However nothing else can be done with them! Since there is no
possibility to reference these in numberValue contexts, they cannot influence network or graphical infor-
mation. It seems that –either– a statement is required saying that a reference in a numberValue context
is allowed and returns the nominal value, –and/or–new operators are needed to address the individual
min, nom and max fields.

miNoMax range checking
Suppose a cell/view has an interface declaration containing (parameter A (miNoMax (mnm 0 1
10))). Then an instantiation of this cell/view could specify a (parameterAssign A (miNoMax –1)).
The program would first silently type upgrade the integer ’–1’ to an (mnm (undefined) –1 (unde-
fined)), and this entire (mnm value would then be copied into A. Therefor no errors or warnings would
be issued, saying that ’–1’ falls outside the original [0,10] bounds, because the bounds itself are thrown
away.

units on integer parameters
The (parameter (unit declaration is to be able to use convenient parameter values, scaled with re-
spect to the ’real world’ SI values. The (scale forms are required to pass these values out to other li-
braries. If such a value is passed to another library, the value local to the receiving library is obtained by
multiplying the originally assigned value with the ratio of the two (scales of this (unit in both libraries.
For (integer values this seems a problem, since multiplying with this ratio could easily lead to fractions.
It seems natural to EDIF to have the new value type upgraded to a numberValue, as the (divide does.
This silent type upgrading from integer to number is normal to EDIF expressions, and is determined by
the TYPE of the operands and the respective operation, NOT by the actual VALUE of the operands. This
would mean that a (parameterAssign size (integer 6)) to a (parameter size (inte-
ger) (unit distance)) in another library will be ALWAYS type upgraded to a numberValue –irre-
spective of the actual (scale values– and hence cause a fatal type clash with the declared integer pa-
rameter, since a silent type downgrading from number to integer is never done in EDIF expressions.This
can be seen as an inconsistency in the EDIF standard. A note on how to handle this seems required.

level–2 as meta language
From a language design point of view, the EDIF level–1 and level–2 extensions could be seen as a
meta–language, providing a full programming language on top of the EDIF level–0 basic data. Seen this
way it is a pity that control statements like (if and (while are allowed at so few locations, and it can
be considered dirty that they are not allowed to contain all statements (forms) that can surround them. In
particular it is very disappointing that although (if and (while are allowed in (interface, they can
not contain (parameter or (port declarations.

assign in level 2
The EDIF level–1 extension with respect to level–0 is the introduction of (variables, (constants,
(parameters, a set of operators, and expressions. It seems strange that the (assign form is restricted
to level–2 only, whereas its functionality clearly is tied to the other level–1 forms.

name scoping
A more accurate and exhaustive specification of the name scoping mechanism, would improve the quality
of the EDIF manual. It seems that (variables are not allowed in the (technology section just to
forbid data exchange between different cells, outside the parameter mechanism.Of course such communi-
cation would lead to ill–specified systems, since the EDIF cells have no prescribed execution order. To
really enforce this limitation, it would be needed that the (userData construct introduces a new scope
level.

Grammatical structuring
This program evaluates all level–1 constructs. This requires among others the replacement of variable
and parameter names by their values, in the locations where these represent expressions. However from
the grammar rules itself it is not immediately obvious which occurrences should be replaced. Take as
example the last line of caption 3: ’(parameterAssign length (integer length)’. It is clear that
this line must be translated into ’(parameterAssign length (integer 8)’. However this is not

6

immediately clear to the program: both occurrences of length are according to the EDIF grammar definition
valueNameRefs. Although not impossible to find out now, a better structuring and naming of the grammar
rules could help here considerably.

CONCLUSIONS
The EIA reference manual describing the EDIF 2.0.0 standard is of high quality, and contains sufficient
information to build a program like this. The resulting program is quite compact, requiring no external files
or tables. However a few remarks to the EDIF standard can be made, and small improvements with re-
spect to the level–1 and level–2 extensions seem feasible.

The program can be really useful in simplifying the EDIF input to other design tools and data sets, espe-
cially those who itself cannot match internally the level–1 and level–2 complexity.

Another interesting usage of this program might be as a very general cell generator. By providing a flexible
and parameterized input description, the program will generate different instances of this cell. It could there
for be usefull as cell generator, generating netlist information as well as graphical and simulation data.

