PLATO: A NEW PIECEWISE LINEAR SIMULATION TOOL

M.T. van Stiphout

L.T.J. van Eijndhoven

H.W. Buurman

Eindhoven University of Technology, Department of Electrical Engineering
P.0.Box 513, 5600 MB Eindhoven, The Netheriands
Tel.: 31-40-473710, Telex: 51163, Fax: 31-40-448375, Email: man@ele.tue.nl

ABSTRACT

This paper describes the basic concepts of a new piecewise
linear circuit simulation program called PLATO. Piecewise
linear modeling is a very generic and powerful approach to
the modeling of electronic components. It allows for the use
of macro modeling and mixed-level simulation because all™
components are modeled in a uniform way. Models are
stored in a compact matrix notation. Default models can
easily be redefined or modified without affecting the
program code but simply by editing the component library.
Powerful algorithms are available for solving the piecewise
linear equations, yielding global instead of local
convergence, this way eliminating convergence problems
occurring in more conventional simulators. Latency
behavior is utilized by the application of multirate
integration techniques together with efficient sparse matrix
methods. Results show that computational effort is mainly
restricted to active circuit parts.

1. INTRODUCTION.

The use of piecewise linear modeling in circuit simulation
has several advantages. Most important is the ability to
model a wide range of components in a uniform way. Logic
gates, resistors, capacitors, transistors but also more
complex subcircuits such as operational amplifiers can be
described. This way we are able to mix low level
components with macro models in a natural way. Clearly
the resulting simulation program is highly suitable for
mixed analog-digital circuit simulation. Secondly,
piecewise linear solution algorithms show excellent
convergence properties where a conventional creuit
simulator such as SPICE often suffers from convergence
problems. A simulator feature improving its flexibility is
the absence of built-in models. All component descriptions
reside in a model Library which can easily be modified or
extended.

A multirate integration method for a set of ordinary
differential equations is a method that integrates subsets
of equations with their optimal individual stepsize. The
potentials of such a method are obvious. The computation
time required can be minimized by integrating slowly
varying subsets of equations with a large stepsize and fast
varying subsets with a smaller one. The concept has been
applied before, e.g. in SAMSON2, an event driven SPICE-
like circuit simulator which partitions the circuit into
subcircuits and assigns individual stepsizes to them.

235

2024/90/0000/0235801.00©1990 IEEE

The piecewise linear simulator described in this paper
utilizes a fine grained version of the multirate approach,
automatically exploiting the latent circuit parts.

This paper is an attempt to summarize the techniques
implemented in PLATO, with a slight emphasis on
transient analysis. In the sequel we will shortly introduce
the piecewise linear modeling concept (section 2) and
piecewise linear solution techniques (section 3) as applied
in the simulator. Next the time integration algorithm
(section 4) and some aspects of the solution process are
discussed in more detail (section 5). Finally some
optimizations (section 6) and simulation results are
presented (section 7).

2. PIECEWISE LINEAR MODELING.

A general description of a continuous piecewise linear
dynamical system [1] is given by equation (2.1).

0 u A Az fx] je1
Uj= Ay Ag Aozl ul+ las

2.1)

31 Agz Ags ag
where & = %, and 2.2)
ptg=0, p20andg20. (2.3)

The conditions (2.3) imply that p and ¢ contain nonnegative
elements only and have zero inner product. Vectors x and u
represent the systems terminal variablés and the state
variables used to model dynamical behavior. The matrix
shown can describe 2" segments, with n the dimension of
matrix Ags. Let us for the moment ignore the state
variables and assume that vector g is identical to zero.
Now each segment is determined by a linear mapping
0=Apx +a; and a set of inequalities defining the domain

,in which the mapping is valid: p =Agx +a320. The

mapping of a neighboring segment can be found by pivoting
on an element of submatrix Ags. Because of the continuous
modeling, the new mapping after pivoting on element A%%
differs from the previous one by a rank one update solely
[2):

0=Ax +a;, with (2.4
A‘k 'Ak‘ A‘k _ak
Ay =4y - L anda) =0, - 252 (2.5)
A3 Az

The often used wildcard notation ine.g. A% means that the

integration formulas and assume that r = 1 throughout the
rest of this paper.

The transient analysis proceeds in an event driven manner.
We distinguish between two types of events:

— dynamic events and
— pl events.

A pl event occurs if the solution vector reaches a boundary
hyperplane of the current segment. This happens if for
some leafcell a component of p becomes 0. P events can be
calculated explicitly using the time derivative of p: suppose

3k Pr <O AP <P ivk, (4.8)

then the next pl event for this leafcell is at time
tnow — (Dr / Dr). The integration must be stopped until the
piecewise linear equations are solved. A complication
oceurs if the solution algorithm has to take a step in the
direction of a g variablee Now the & may change
discontinuously in which case the integration has to be
restarted for the leafcell involved. Such a restart is not
necessary if only simple pivots are performed. Note
however that pivoting causes an upper bound on the
number of continuous circuit wvariable derivatives.
Unfortunately this restriction implies that nothing can be
gained from the application of integration formulas with
order greater than 2 [9]. After the piecewise linear
equations have been solved, the leafcells affected by
changes in ¥ have to be examined. If necessary their events
and stepsizes have to be corrected. Note that the changes
in ¥ due to pivoting can be computed easily by solving

0= +cr'yAt +o(p +rh%) (4.9)

as described in [8], in which ¢ and r* are known column and
row vectors and p is the member of the leafcell source
vector corresponding to the pivot row.

Next we consider the dynamic events. For every leafcell
the companion model has been determined and inserted in
the overall system matrix A. A dynamic event occurs every
time the validity of a companion model expires. The use of
a fine grained multirate integration technique implies that
every leafcell obtains its own optimal stepsize. Naturally it
is possible and even desirable for a number of leafcells to
share the same stepsize. This way slowly varying
~ components will be integrated with large time steps while
“fast varying components receive a small stepsize. Suppose
some leafcell [has a dynamic event at time ¢,, = £,,;. First
we update the x-, u-, - and p-variables corresponding to
leafcell / using the approximations of their time derivatives
%, 7, & and p. Next a new stepsize h,,,; is computed for the
next integration step. The previous stepsize h, is
maintained if there is no significant difference between the
new stepsize h,.; and h,. In this case only the b vector
changes due to the update of 2. The changes in b are now
used to compute the changes in ¥ denoted by AX. A more
complicated situation arises if the stepsize requires
adjustment. Although this causes b as well as J to change,
we can still compute an update A% for vector X in a way
analogous to equation (4.9). Finally, we have-to investigate
the influence of the changes in ¥ on the related leafcells.

Since the circuit variable derivatives have changed for
those leafeells, it may well be possible that the stepsize
substituted is no longer valid. Therefore we have to update
the x-, &-, p- and Z-variables, recompute p and check if the
applied stepsizes are still appropriate. If necessary, the
event times must be adjusted.

5. PIVOTING.

As explained in the previous section, a pl event during
transient analysis interrupts the time integration. At this
time the pl equations have to be resolved which involves
pivoting. Unlike the situation during the initial analysis,
the leafcells jacobian matrix is now updated with a rank
one update due to the substitution of an integration
formula as indicated by equation (4.4). In fact every Ay,
i, je {1, 3} has been updated, so the pivot value and the
update vectors are not immediately available. Nevertheless
it is still possible o obtain the new jacobian matrix by
performing a rank one update.

Lemma: let P denote a pivot operation on an element of
submatrix Ag; and let L denote the substitution of a

multistep integration formula. NowP oL =L oP.

Proof: let us extend the results in (4.4) to all submatrices
Aij- We find :

Ay 84, +84;0D Ay; fori, j e i, j). (5.1)
Let us further define:

ey BAT, co B4, r AAY, rp 84 (5.2)

and p A A%, (5.3)

Now define the following matrices where A is a shorthand
for matrices A;;:

A’ pivot on matrix A

A apply (4.3) to matrix A
A" apply (4.3) to matrix A’
X pivot on matrix A

and show that A equals A”. First we construct A”:

A” =A}; +8A5,D" Ay, (5.4)
D=1-844, D' =I-8A%. (5.5)
Now substitute the expressions for A’:
€17 €1
Ajy =Aq - , €] = — (5.6)
1n n--; 155
cyr c
Alp=Ap-—=2, &= ‘;- (5.7)
. Caln &
Ay =Ag - , r] = —— (5.8)
2 2" 1 ?
C272 T3
Aj =Ag —- , Ty = ——— (5.9)
2=An-— 2 P
1
== (5.10)
P p

The result contains a complicated matrix inverse which can
be eliminated by applying the well known Sherman-

237

asterisk can be replaced by any legal index value, ie. in
this case indicating column k of matrix A;3. '

3. SOLVING THE PL EQUATIONS.

A hierarchical circuit description serves as input to the
simulation program. Every leafcell of the circuit hierarchy
is modeled by a matrix in the form of equation (2.1). The
leafcell submatrices Aj; together with the interconnection
equations are used to build the system matrix A. The
system source vector a is composed out of leafcell
subvectors a; and the input specifications. As soon as A
and a are available, the circuit variables are solved from
0= Ax +a in which x is now a global vector contrary to the
x used in (2.1). Next we scan all leafcells and use x to
compute the p-vectors. While doing so, we assume u =0 as
an initial condition and ¢ =0 for the initial segment so
p =Agz1x +a3. An initial solution is found if p 2 0 for all
leafcells. If any leafcell has a p vector with a negative
component, we have to apply some algorithm to solve what
is called the Linear Complementarity Problem (L.CP):

v=Mi+m,vii=0,v20andi20. (3.1)

For a single leafcell we would simply solve
P =Agzzq +(Ag-x + ag) so matrix M is explicitly available.
In general however matrix M will have to be constructed by
eliminating all internal circuit variables so there is a
distinction between the M and A3; matrices. In practice
the existence of M can be emulated as described in [3].

Several algorithms are available for solving the LCP. The
one applied in the simulator is a pivoting type algorithm as
described by van de Panne [4]. Basically, this algorithm
tries to solve the pl equations by performing principal
(block) pivots on elements of submatrices Ags. For a
transient analysis this solution suffices. A dc solution can
be obtained by solving:

0] _ A Alz| x|, le1
[p] - @31 Aaa] M* {‘13} (3.2)
with
’ A ’
Ay = &2 Ag}’ = |Az Asz], 3.3)
13 ’ 4 , ai
A13 = @23] and x’ = [u],al = [aZJ (34)

4. TRANSIENT ANALYSIS.

The simulation program solves for the circuit variable
derivatives rather than the circuit variables themselves.
Therefore we introduce the backward differences Z,.;, %,.1,

Gn+1 DA iy

= AZXnid —ZXa — Unsl = Un
Xn4 = —hn— Upy = T @
. . 4.1
- A 9nil —Qn - Upsy —Up
Gns1 &€ —5— Upy & ————
ha h,

Subtracting equation (2.1) for time points ¢ = ¢,,; and ¢ =¢,

"~ we find:

236

?0 n Az Ay f“l ’
Una|= |An A Anl|lpa (4.2)
"l+1 a Az Axn Gna1

in which the constant source vector (a;, @, a3) has
disappeared. From here on subscripts n+l1 are often
omitted. We now eliminate the unknown &,, by
substituting a linear multistep integration formula with
constant step size:

i=p i=p
0= Y osup+h Y Biltn

(4.3)
i1 i=1

After some rearranging we find:

0=JX+b (4.4)
in’ which

J=Ap +84,,DA4, (4.5)

D=I-384p, 5= - Py (4.6)

(L5}

and

- . AyD

Fo- (B + BO)AmD‘lxl,. _A1D7 (o + aolun “wn

[» &7 ha._l

1 i=p .
AoD1 U +hBil,
hog 12D ié;,.(a;un-c + Blun—i)
from which ¥ is rapidly solved. Matrix J will be referred to
as the companion model of a piecewise linear component.

Once % is known, Z, & and 7 can be solved successively. Of
course these results are valid under the assumption that
the inversion of D is feasible. For some special cases like
backward euler (BE), the trapezoidal rule (TR), the second
order backward differentiation formula (BDF2) [5] ora
second order A-contractive formula (ACT2) [6], & and & are
listed in table 1.

TABLE 1. § and b for several integration rules.

] b
BE h | ApDly,
TR Yeh | ApDta,
BDF2 | % 2/3A1 2D -1 l"ln + I/SAI 2D -1 17,,
ACT2 | 2 %A 12D Vi, - %Al 2Dz,
4 1
+ EA 12D 1 Up

Observe that the update 84,,D A, on matrix Ay; is a
rank r update where r is the rank of matrix A 5. In many
cases this rank will be equal to one in which case a change
of stepsize requires only a simple rank one update on the
system matrix. The corresponding LU decomposition can
be updated by a very efficient algorithm devised by Bennett
[7]. A sparse matrix implementation of this algorithm was
already presented in [8]. Note that for a 2-step method like
BDF2 the coefficients & and §§ depend on A, as well as A,_;
and require recomputation if a stepsize changes or if
hn-1 #h,. For simplicity we will restrict ourselves to 1-step

Morrison-Woodbury formula (10,111
A +XCY)L =AT1_AX(CL + Y'AIX) YA (5.11)
with

Ca%,A =D, X=cy, Yi=r, (5.12)
Using the fact that
-1
K= (% +ryDley) andk =ryDle,y (5.13)

are constants and some juggling with terms we finally
obtain:

A" =An + 5A12D_1A21 (514)

,
-Kcy + 8A12D‘1c2)(?1 +roD A g). (515)

The derivation of an expression for A is a bit simpler.
Combining

= - &\F

Apn =Ayp - 1_1 (5.16)
with

Ay =Ay + 34,5074y 517

Ag=A3+ 841D Ags o Ty=c1 + 84120 71¢,(5.18)
Agy =Ag +8AgD Ay o Fi=r; +8rD A5 (519)
Agg=Azs +8AgD Ay — F=p+raDley (520

we almost automatically find that E equals A” which
completes the proof

6. EVENT SCHEDULING.

As already pointed out by C.W. Gear [12] there is a
disadvantage to the approach sketched in section 4. Since
it is impossible to predict the circuit behavior while
determining a new stepsize for a specific leafcell, we may be
forced to correct it before it reaches its event time due to
activities in other parts of the circuit. This causes a lot of
computational overhead, involving the update of circuit
variables and the recomputation and effectuation of
stepsizes. Gear also showed that no merit can be expected
from the application of a multirate integration technique if
- the stepsizes of the subproblems lie close together. So the
rigorous application of the multirate principle described
above may not be very efficient.

The integration algorithm explained in section 4 is very
well suited for the handling of multiple events at the same
time. For every dynamic event the source vector b is
adjusted and the new ¥ is determined. Multiple events can
be processed by simply catenating their contributions in the
b vector. Since it is often the case that related components
have events at about the same time, it is clear that a lot of
cpu time can be saved by clustering dynamical events. As
long as every component receives its own optimal stepsize
however, it will rarely be possible to service more than one
event at a time. :

A way to achieve improvements for both drawbacks is the
discretization of event times. Forcing nearby events to a
grid results in the handling of multiple events. A further
reduction of the overhead can be achieved by forcing groups
of related leafcells to use the same (minimum) stepsize.
This way the recomputation of stepsizes is minimized and
the need for reducing them will diminish. Dynamic event
times are discretized as follows. Assume the length of the
integration interval is given by I, then events are forced to
one of the following grids:

I.2* for k=1,2,---,N. (6.1)

Every time a new event has to be determined, a value of &
is chosen such that the desired stepsize can be mapped onto
the discrete time axis without violating the time integration
accuracy requirements represented in the stepsize A. After
the next event has been determined, the leafcells stepsize is
set accordingly.

7. SIMULATION RESULTS.

Some simulation statistics are presented to illustrate the
concepts explained in this paper. Circuits simulated are an
ad converter, an 8-stage shift register, a simple pll, several
stage ring inverters and inverter chains. The ad converter
contains among others an analog multiplexer, logic gates
and more conventional leafcells like resistors and
capacitors. The actual ad conversion is implemented using
a macro model. A comparison of program statistics for all
test circuits is shown in table 2. All simulations were done
on a HP9000s835 computer.

8. CONCLUSIONS.

The concepts described in this paper have been
implemented in a piecewise linear simulation program
called PLATO. Latency is exploited by sparse matrix
techniques and the application of multirate integration
techniques. The effectiveness of the applied methods is
illustrated by some test circuits which show that
computational effort is restricted to active circuit parts.

REFERENCES.

(11 W.M.G. van Bokhoven, “Piecewise-Linear Modelling and
Analysis,” PhD Thesis, Eindhoven, The Netherlands, May
198L.

[21 T. Fujisawa, E. kuh, and T. Ohtsuki, “A Sparse Matrix
Method for Analysis of Piecewise-Linear Resistive
Networks,” IEEE Trans. on Circuit Theory, vol. CT-19, no. 6,
pp. 571-584, Nov. 1972.

[3] J.T.J. van Eijndhoven, “A piecewise linear simulator for
large scale integrated circuits,” Ph.D. Thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, Dec.
1984.

{41 C.'van-de Panne, “A Complementary Variant of Lemke’s
Method “for the Linear Complementarity Problem,”
Mathematical Programming, vol. 7, pp. 283-310, North-
Holland Publishing Company, 1974.

[51 CW. Gear, “The Automatic Integration of Ordinary
Differential Equations,” Communications of the ACM, vol.
14, no. 3, pp. 176-179, March 1971.

238

TABLE 2. Program statistics

circuit ade shit | pll | ring7 | ringl5 | ring21 | chain5 | chainlO
#components 74 56 10 14 30 42 11 21
matrix size 149 164 10 43 91 127 31 61
matrix density 22 35 | 240 134 6.6 4.7 17.3 9.2
pivots (initial) 78 16 6 7 15 21 5 10
pivots (transient) 9870 200 | 238 | 195 214 233 11 23
#dyadic updates 13834 | 1951 | 297 | 2251 3248 3718 176 376
#forw/backw subs. | 20384 | 1667 | 757 | 4921 5705 6299 401 847
#pl events 2376 | 200 | 138 ;| 195 217 234 11 23
#dyn. events 5507 | 1813 | 251 | 5966 | 7243 7980 509 1070
cpu time - | 52.7 158 | 0.6 | 304 51.2 64.6 1.7 6.0

G

Figure 1. Nmos ring inverter with 7 stages: ring?7.

[6] O. Nevanlinna and W. Liniger, “Contractive Methods for
Stiff Differential Equations - Part 1,” BIT, vol. 18, pp. 457-
474,1978.

[71 J.M. Bennett, “Triangular Factors of Modified Matrices,”
Numerische Mathematik, no. 7, pp. 217-221, 1965.

{8] J.T.J. van Eijndhoven and M.T. van Stiphout, “Latency
Exploitation in Circuit Simulation by Sparse Matrix
Techniques,” in Proc. of the Int. Symp. on Circuits end
Systems, pp. 623-626, University of Helsinki, Espoo,
Finland, June 7-8, 1988. —

{91 LN. Hajj and S. Skelboe, “Time-Domain Analysis of
Nonlinear Systems with Finite Number of Continuous
Derivatives,” IEEE Trans. on Circuits and Systems, vol.
CAS-26, no. 5, pp. 297-303, May 1879.

{10] J. Sherman and W.J. Morrison, “Adjustment of an Inverse
Matrix Corresponding to Changes in the Elements of a given T
Column or a Given Row of the Original Matrix,” Ann. Math.
Stat., no. 20, p. 621, 1949.

-l

[11] M. Woodbury, “Inverting Modified Matrices,” Memorandom
42, Statistics Research Group Princeton, New Jersey, 1950.

[12]- C.W. Gear, “Automatic Multirate Methods for Ordinary
Differential Equations,” in Information Processing 80, PD.

717.722, North-Holland Publishing Company, 1980, Figure 2. Analog to digital converter.

239

